氮掺杂碳包覆NiFeNx纳米片阵列用于高效甘油电氧化耦合析氢。

IF 2.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shaojian Jiang, Beibei Wang, Kai Deng, You Xu, Ziqiang Wang, Hongjing Wang, Liang Wang, Hongjie Yu
{"title":"氮掺杂碳包覆NiFeNx纳米片阵列用于高效甘油电氧化耦合析氢。","authors":"Shaojian Jiang, Beibei Wang, Kai Deng, You Xu, Ziqiang Wang, Hongjing Wang, Liang Wang, Hongjie Yu","doi":"10.1088/1361-6528/adf751","DOIUrl":null,"url":null,"abstract":"<p><p>Water splitting represents a pivotal technology for green hydrogen generation, yet its practical application remains constrained by the sluggish kinetics of the oxygen evolution reaction (OER). To address this challenge, we propose a hybrid electrolysis system that replaces OER with the thermodynamically favorable glycerol oxidation reaction, thereby enabling energy-efficient hydrogen production coupled with value-added chemical synthesis. In this work, we reported a bifunctional self-supporting electrocatalyst for the growth of nitrogen-doped carbon shell NiFeN<i><sub>x</sub></i>nanosheets on carbon fibers (NC@NiFeN<i><sub>x</sub></i>) that can be applied to efficient hydrogen production and formate generation. The system can be achieved with a cell voltage of only 1.38 V at 10 mA cm<sup>-2</sup>, which is lower than the overall water electrolysis (1.70 V). Notably, the system achieves exceptional Faradaic efficiencies of 99.7% for hydrogen evolution and 95% for formate generation. This work establishes an innovative strategy for co-producing H<sub>2</sub>and valuable chemicals through glycerol valorization, while addressing key energy challenges in conventional water electrolysis.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen-doped carbon coated NiFeN<i><sub>x</sub></i>nanosheet arrays for efficient glycerol electrooxidation coupled with hydrogen evolution.\",\"authors\":\"Shaojian Jiang, Beibei Wang, Kai Deng, You Xu, Ziqiang Wang, Hongjing Wang, Liang Wang, Hongjie Yu\",\"doi\":\"10.1088/1361-6528/adf751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Water splitting represents a pivotal technology for green hydrogen generation, yet its practical application remains constrained by the sluggish kinetics of the oxygen evolution reaction (OER). To address this challenge, we propose a hybrid electrolysis system that replaces OER with the thermodynamically favorable glycerol oxidation reaction, thereby enabling energy-efficient hydrogen production coupled with value-added chemical synthesis. In this work, we reported a bifunctional self-supporting electrocatalyst for the growth of nitrogen-doped carbon shell NiFeN<i><sub>x</sub></i>nanosheets on carbon fibers (NC@NiFeN<i><sub>x</sub></i>) that can be applied to efficient hydrogen production and formate generation. The system can be achieved with a cell voltage of only 1.38 V at 10 mA cm<sup>-2</sup>, which is lower than the overall water electrolysis (1.70 V). Notably, the system achieves exceptional Faradaic efficiencies of 99.7% for hydrogen evolution and 95% for formate generation. This work establishes an innovative strategy for co-producing H<sub>2</sub>and valuable chemicals through glycerol valorization, while addressing key energy challenges in conventional water electrolysis.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/adf751\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adf751","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水裂解是绿色制氢的关键技术,但其实际应用仍受到析氧反应(OER)动力学缓慢的限制。为了解决这一挑战,我们提出了一种混合电解系统,用热力学有利的甘油氧化反应(GOR)取代OER,从而实现节能制氢和增值化学合成。在这项工作中,我们报道了一种双功能自支撑电催化剂,用于在碳纤维(NC@NiFeNx/CF)上生长氮掺杂碳壳NiFeNx纳米片,该催化剂可用于高效制氢和甲酸生成。该系统可以在10 mA cm-2的电池电压仅为1.38 V时实现,低于整体水电解(1.70 V)。值得注意的是,该系统的法拉第效率达到了99.7%的析氢效率和95%的甲酸生成效率。这项工作建立了一种通过甘油增值共同生产H2和有价值化学品的创新策略,同时解决了传统水电解中的关键能源挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nitrogen-doped carbon coated NiFeNxnanosheet arrays for efficient glycerol electrooxidation coupled with hydrogen evolution.

Water splitting represents a pivotal technology for green hydrogen generation, yet its practical application remains constrained by the sluggish kinetics of the oxygen evolution reaction (OER). To address this challenge, we propose a hybrid electrolysis system that replaces OER with the thermodynamically favorable glycerol oxidation reaction, thereby enabling energy-efficient hydrogen production coupled with value-added chemical synthesis. In this work, we reported a bifunctional self-supporting electrocatalyst for the growth of nitrogen-doped carbon shell NiFeNxnanosheets on carbon fibers (NC@NiFeNx) that can be applied to efficient hydrogen production and formate generation. The system can be achieved with a cell voltage of only 1.38 V at 10 mA cm-2, which is lower than the overall water electrolysis (1.70 V). Notably, the system achieves exceptional Faradaic efficiencies of 99.7% for hydrogen evolution and 95% for formate generation. This work establishes an innovative strategy for co-producing H2and valuable chemicals through glycerol valorization, while addressing key energy challenges in conventional water electrolysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信