基于深度学习的基因扰动效应预测尚未优于简单的线性基线。

IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Constantin Ahlmann-Eltze, Wolfgang Huber, Simon Anders
{"title":"基于深度学习的基因扰动效应预测尚未优于简单的线性基线。","authors":"Constantin Ahlmann-Eltze, Wolfgang Huber, Simon Anders","doi":"10.1038/s41592-025-02772-6","DOIUrl":null,"url":null,"abstract":"Recent research in deep-learning-based foundation models promises to learn representations of single-cell data that enable prediction of the effects of genetic perturbations. Here we compared five foundation models and two other deep learning models against deliberately simple baselines for predicting transcriptome changes after single or double perturbations. None outperformed the baselines, which highlights the importance of critical benchmarking in directing and evaluating method development. The analysis presented in this Brief Communication shows that, despite their complexity, current deep learning models do not outperform linear baselines in predicting gene perturbation effects, thus emphasizing the importance of further method development and thorough evaluation.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 8","pages":"1657-1661"},"PeriodicalIF":32.1000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12328236/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep-learning-based gene perturbation effect prediction does not yet outperform simple linear baselines\",\"authors\":\"Constantin Ahlmann-Eltze, Wolfgang Huber, Simon Anders\",\"doi\":\"10.1038/s41592-025-02772-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research in deep-learning-based foundation models promises to learn representations of single-cell data that enable prediction of the effects of genetic perturbations. Here we compared five foundation models and two other deep learning models against deliberately simple baselines for predicting transcriptome changes after single or double perturbations. None outperformed the baselines, which highlights the importance of critical benchmarking in directing and evaluating method development. The analysis presented in this Brief Communication shows that, despite their complexity, current deep learning models do not outperform linear baselines in predicting gene perturbation effects, thus emphasizing the importance of further method development and thorough evaluation.\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\"22 8\",\"pages\":\"1657-1661\"},\"PeriodicalIF\":32.1000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12328236/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41592-025-02772-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-025-02772-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

最近对基于深度学习的基础模型的研究有望学习单细胞数据的表示,从而能够预测遗传扰动的影响。在这里,我们比较了五种基础模型和另外两种深度学习模型,以预测单次或双次扰动后转录组变化的简单基线。没有一个超过基线,这突出了指导和评估方法开发的关键基准的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep-learning-based gene perturbation effect prediction does not yet outperform simple linear baselines

Deep-learning-based gene perturbation effect prediction does not yet outperform simple linear baselines
Recent research in deep-learning-based foundation models promises to learn representations of single-cell data that enable prediction of the effects of genetic perturbations. Here we compared five foundation models and two other deep learning models against deliberately simple baselines for predicting transcriptome changes after single or double perturbations. None outperformed the baselines, which highlights the importance of critical benchmarking in directing and evaluating method development. The analysis presented in this Brief Communication shows that, despite their complexity, current deep learning models do not outperform linear baselines in predicting gene perturbation effects, thus emphasizing the importance of further method development and thorough evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信