以水为氢源的炔的电催化半加氢反应。

IF 16 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Ying Gao, Meng He, Yongmeng Wu, Bo-Hang Zhao, Cuibo Liu, Bin Zhang
{"title":"以水为氢源的炔的电催化半加氢反应。","authors":"Ying Gao, Meng He, Yongmeng Wu, Bo-Hang Zhao, Cuibo Liu, Bin Zhang","doi":"10.1038/s41596-025-01230-z","DOIUrl":null,"url":null,"abstract":"<p><p>The semi-hydrogenation of alkynes to alkenes, especially acetylene to ethylene, is an essential transformation that delivers raw materials and scaffolds for synthetic industries. Electrocatalytic hydrogenation, which is green and mild, provides an alternative strategy to the conventional hydrogenation process, which relies on high temperature, high pressure and flammable H<sub>2</sub>. This protocol describes an electrocatalytic semi-hydrogenation method to synthesize olefins with water as the hydrogen source under ambient temperature and pressure. Electrocatalytic semi-hydrogenation involves the adsorption and activation of alkynes and the cathodic generation of the active hydrogen (H*) intermediate from water dissociation, followed by the addition of H* to an adsorbed alkyne to yield an alkene. This process is generally assisted by Cu-based electrocatalysts (sulfur-modified Cu and Cu nanoparticles) and commercially available reaction vessels and is performed under a direct-current or constant potential power supply. Here we provide detailed procedures for catalyst design synthesis, alkene electrosynthesis and electrochemical in situ/ex situ spectroscopies for investigating reaction mechanisms. The semi-hydrogenation procedure can be performed within hours; it can also be flexibly adapted to synthetic procedures performed in batch or flow reactors and for various reaction times to meet the adjustable capacity requirements for fine or bulk chemicals. Compared with conventional approaches, the electrocatalytic semi-hydrogenation method eliminates the need for expensive and toxic hydrogenation reagents and conditions with elevated temperature and pressure. Our electrocatalytic semi-hydrogenation strategy has various advantages as a sustainable and alternative method to existing methods, including high alkene selectivity, operational simplicity, substrate universality and easily reproducible functional group compatibility.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocatalytic semi-hydrogenation of alkynes using water as the hydrogen source.\",\"authors\":\"Ying Gao, Meng He, Yongmeng Wu, Bo-Hang Zhao, Cuibo Liu, Bin Zhang\",\"doi\":\"10.1038/s41596-025-01230-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The semi-hydrogenation of alkynes to alkenes, especially acetylene to ethylene, is an essential transformation that delivers raw materials and scaffolds for synthetic industries. Electrocatalytic hydrogenation, which is green and mild, provides an alternative strategy to the conventional hydrogenation process, which relies on high temperature, high pressure and flammable H<sub>2</sub>. This protocol describes an electrocatalytic semi-hydrogenation method to synthesize olefins with water as the hydrogen source under ambient temperature and pressure. Electrocatalytic semi-hydrogenation involves the adsorption and activation of alkynes and the cathodic generation of the active hydrogen (H*) intermediate from water dissociation, followed by the addition of H* to an adsorbed alkyne to yield an alkene. This process is generally assisted by Cu-based electrocatalysts (sulfur-modified Cu and Cu nanoparticles) and commercially available reaction vessels and is performed under a direct-current or constant potential power supply. Here we provide detailed procedures for catalyst design synthesis, alkene electrosynthesis and electrochemical in situ/ex situ spectroscopies for investigating reaction mechanisms. The semi-hydrogenation procedure can be performed within hours; it can also be flexibly adapted to synthetic procedures performed in batch or flow reactors and for various reaction times to meet the adjustable capacity requirements for fine or bulk chemicals. Compared with conventional approaches, the electrocatalytic semi-hydrogenation method eliminates the need for expensive and toxic hydrogenation reagents and conditions with elevated temperature and pressure. Our electrocatalytic semi-hydrogenation strategy has various advantages as a sustainable and alternative method to existing methods, including high alkene selectivity, operational simplicity, substrate universality and easily reproducible functional group compatibility.</p>\",\"PeriodicalId\":18901,\"journal\":{\"name\":\"Nature Protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Protocols\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41596-025-01230-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01230-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

炔半加氢制烯烃,特别是乙炔半加氢制乙烯,是为合成工业提供原料和支架的重要转化。电催化加氢是一种绿色、温和的方法,为传统加氢工艺提供了一种替代策略,传统加氢工艺依赖于高温、高压和可燃性氢气。介绍了以水为氢源,在常温常压下电催化半加氢合成烯烃的方法。电催化半加氢包括对炔烃的吸附和活化,以及从水解离中阴极生成活性氢(H*)中间体,然后将H*加到被吸附的炔烃上生成烯烃。该过程通常由铜基电催化剂(硫修饰铜和铜纳米颗粒)和市售反应容器辅助,并在直流或恒电位电源下进行。在这里,我们详细介绍了催化剂设计合成,烯烃电合成和电化学原位/非原位光谱研究反应机理的程序。半氢化过程可在数小时内完成;它还可以灵活地适应在批处理或流动反应器中进行的合成程序,并适用于各种反应时间,以满足精细或散装化学品的可调节容量要求。与传统方法相比,电催化半加氢方法不需要昂贵和有毒的加氢试剂,也不需要高温高压的条件。我们的电催化半加氢策略具有可持续性和可替代现有方法的诸多优点,包括烯烃选择性高、操作简单、底物普遍性和易于重复的官能团相容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrocatalytic semi-hydrogenation of alkynes using water as the hydrogen source.

The semi-hydrogenation of alkynes to alkenes, especially acetylene to ethylene, is an essential transformation that delivers raw materials and scaffolds for synthetic industries. Electrocatalytic hydrogenation, which is green and mild, provides an alternative strategy to the conventional hydrogenation process, which relies on high temperature, high pressure and flammable H2. This protocol describes an electrocatalytic semi-hydrogenation method to synthesize olefins with water as the hydrogen source under ambient temperature and pressure. Electrocatalytic semi-hydrogenation involves the adsorption and activation of alkynes and the cathodic generation of the active hydrogen (H*) intermediate from water dissociation, followed by the addition of H* to an adsorbed alkyne to yield an alkene. This process is generally assisted by Cu-based electrocatalysts (sulfur-modified Cu and Cu nanoparticles) and commercially available reaction vessels and is performed under a direct-current or constant potential power supply. Here we provide detailed procedures for catalyst design synthesis, alkene electrosynthesis and electrochemical in situ/ex situ spectroscopies for investigating reaction mechanisms. The semi-hydrogenation procedure can be performed within hours; it can also be flexibly adapted to synthetic procedures performed in batch or flow reactors and for various reaction times to meet the adjustable capacity requirements for fine or bulk chemicals. Compared with conventional approaches, the electrocatalytic semi-hydrogenation method eliminates the need for expensive and toxic hydrogenation reagents and conditions with elevated temperature and pressure. Our electrocatalytic semi-hydrogenation strategy has various advantages as a sustainable and alternative method to existing methods, including high alkene selectivity, operational simplicity, substrate universality and easily reproducible functional group compatibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信