Mounika Aare, Jassy Mary S Lazarte, Magesh Muthu, Arun K Rishi, Mandip Singh
{"title":"基因生物工程PD-L1靶向外泌体用于耐药三阴性乳腺癌的免疫治疗","authors":"Mounika Aare, Jassy Mary S Lazarte, Magesh Muthu, Arun K Rishi, Mandip Singh","doi":"10.1007/s13346-025-01920-x","DOIUrl":null,"url":null,"abstract":"<p><p>Immunotherapy has transformed cancer treatment by harnessing the immune system to target tumor cells, with PD-L1 inhibition emerging as a promising strategy. Exosomes, which naturally function as nanocarriers, offer significant potential for delivering therapeutic payloads, while genetic engineering allows for improved cargo specificity and efficacy. Here, for the first time, we genetically engineered exosomes to express anti-PD-L1 (PDL E) on their surface, enabling targeted drug delivery and immunotherapeutic activity. These engineered exosomes were then loaded with STAT3 siRNA (PDL ESi) and evaluated against doxorubicin-resistant MDA-MB-231 cells in combination with paclitaxel. Both in vitro and in vivo studies demonstrated a pronounced reduction in tumor burden (P < 0.001) and progression. Mechanistic investigations revealed that these exosomes activated apoptotic pathways, including the PI3K/AKT/mTOR axis, while inhibiting survival signals such as BCL-2, thereby enhancing tumor cell apoptosis. Notably, PD-L1 expression was downregulated in tandem with modulation of the STAT3/Nrf2 signaling axis, further augmenting the anti-tumor immune response. Toxicity studies in MCF-10 A cells showed that PDL ESi was well-tolerated, with no off-target effects. Imaging analyses in both 3D spheroids and tumor xenograft models confirmed the efficient tumor targeting of PDL E, demonstrating their time-dependent accumulation at the tumor site. Collectively, these findings highlight the promise of PD-L1-targeted, genetically engineered exosomes as a versatile platform for combination cancer therapy, providing a multifaceted strategy to overcome therapeutic resistance in TNBC.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetically bio-engineered PD-L1 targeted exosomes for immunotherapy of resistant triple negative breast cancer.\",\"authors\":\"Mounika Aare, Jassy Mary S Lazarte, Magesh Muthu, Arun K Rishi, Mandip Singh\",\"doi\":\"10.1007/s13346-025-01920-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immunotherapy has transformed cancer treatment by harnessing the immune system to target tumor cells, with PD-L1 inhibition emerging as a promising strategy. Exosomes, which naturally function as nanocarriers, offer significant potential for delivering therapeutic payloads, while genetic engineering allows for improved cargo specificity and efficacy. Here, for the first time, we genetically engineered exosomes to express anti-PD-L1 (PDL E) on their surface, enabling targeted drug delivery and immunotherapeutic activity. These engineered exosomes were then loaded with STAT3 siRNA (PDL ESi) and evaluated against doxorubicin-resistant MDA-MB-231 cells in combination with paclitaxel. Both in vitro and in vivo studies demonstrated a pronounced reduction in tumor burden (P < 0.001) and progression. Mechanistic investigations revealed that these exosomes activated apoptotic pathways, including the PI3K/AKT/mTOR axis, while inhibiting survival signals such as BCL-2, thereby enhancing tumor cell apoptosis. Notably, PD-L1 expression was downregulated in tandem with modulation of the STAT3/Nrf2 signaling axis, further augmenting the anti-tumor immune response. Toxicity studies in MCF-10 A cells showed that PDL ESi was well-tolerated, with no off-target effects. Imaging analyses in both 3D spheroids and tumor xenograft models confirmed the efficient tumor targeting of PDL E, demonstrating their time-dependent accumulation at the tumor site. Collectively, these findings highlight the promise of PD-L1-targeted, genetically engineered exosomes as a versatile platform for combination cancer therapy, providing a multifaceted strategy to overcome therapeutic resistance in TNBC.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-025-01920-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01920-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Genetically bio-engineered PD-L1 targeted exosomes for immunotherapy of resistant triple negative breast cancer.
Immunotherapy has transformed cancer treatment by harnessing the immune system to target tumor cells, with PD-L1 inhibition emerging as a promising strategy. Exosomes, which naturally function as nanocarriers, offer significant potential for delivering therapeutic payloads, while genetic engineering allows for improved cargo specificity and efficacy. Here, for the first time, we genetically engineered exosomes to express anti-PD-L1 (PDL E) on their surface, enabling targeted drug delivery and immunotherapeutic activity. These engineered exosomes were then loaded with STAT3 siRNA (PDL ESi) and evaluated against doxorubicin-resistant MDA-MB-231 cells in combination with paclitaxel. Both in vitro and in vivo studies demonstrated a pronounced reduction in tumor burden (P < 0.001) and progression. Mechanistic investigations revealed that these exosomes activated apoptotic pathways, including the PI3K/AKT/mTOR axis, while inhibiting survival signals such as BCL-2, thereby enhancing tumor cell apoptosis. Notably, PD-L1 expression was downregulated in tandem with modulation of the STAT3/Nrf2 signaling axis, further augmenting the anti-tumor immune response. Toxicity studies in MCF-10 A cells showed that PDL ESi was well-tolerated, with no off-target effects. Imaging analyses in both 3D spheroids and tumor xenograft models confirmed the efficient tumor targeting of PDL E, demonstrating their time-dependent accumulation at the tumor site. Collectively, these findings highlight the promise of PD-L1-targeted, genetically engineered exosomes as a versatile platform for combination cancer therapy, providing a multifaceted strategy to overcome therapeutic resistance in TNBC.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.