虾青素:自然界的多功能分子,天然来源,健康益处和工艺进步。

IF 7.7 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Vaibhav Sunil Tambat, Reeta Rani Singhania, Yamini Sumathi, Chiu-Wen Chen, Cheng-Di Dong, Philippe Michaud, Anil Kumar Patel
{"title":"虾青素:自然界的多功能分子,天然来源,健康益处和工艺进步。","authors":"Vaibhav Sunil Tambat, Reeta Rani Singhania, Yamini Sumathi, Chiu-Wen Chen, Cheng-Di Dong, Philippe Michaud, Anil Kumar Patel","doi":"10.1080/07388551.2025.2537816","DOIUrl":null,"url":null,"abstract":"<p><p>Astaxanthin, a natural di-keto carotenoid xanthophyll, is a highly valued nutraceutical and food ingredient due to its potent health benefits, including: anti-inflammatory, antioxidant, anti-cancer, cardiovascular, and anti-diabetic effects. This review examines the primary natural sources of: astaxanthin microalgae, yeast, bacteria, and plants, with a focus on microalgae due to their superior accumulation potential and bioactivity. It explores the growing prospects for large-scale astaxanthin production, highlighting advancements in both upstream and downstream processes. Upstream innovations include enhanced bioprocess designs that improve biomass yield, light and stress tolerance. Downstream, sustainable extraction methods such as aqueous two-phase systems with deep eutectic solvents (99.64% recovery) and high-pressure supercritical CO<sub>2</sub> extraction have improved efficiency and scalability. Additionally, eco-friendly techniques, such as bead milling and pulsed electric field permeabilization offer cost-effective solutions, among other cell disruption techniques, and ensure higher yields. This study provides a comprehensive overview of recent advances in astaxanthin production and extraction, aligned with the Sustainable Development Goals (SDGs) linked to health and well-being (SDG 3) and responsible consumption and production (SDG 12).</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-19"},"PeriodicalIF":7.7000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Astaxanthin: nature's multifunctional molecule, natural sources, health benefits, and process advancements.\",\"authors\":\"Vaibhav Sunil Tambat, Reeta Rani Singhania, Yamini Sumathi, Chiu-Wen Chen, Cheng-Di Dong, Philippe Michaud, Anil Kumar Patel\",\"doi\":\"10.1080/07388551.2025.2537816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Astaxanthin, a natural di-keto carotenoid xanthophyll, is a highly valued nutraceutical and food ingredient due to its potent health benefits, including: anti-inflammatory, antioxidant, anti-cancer, cardiovascular, and anti-diabetic effects. This review examines the primary natural sources of: astaxanthin microalgae, yeast, bacteria, and plants, with a focus on microalgae due to their superior accumulation potential and bioactivity. It explores the growing prospects for large-scale astaxanthin production, highlighting advancements in both upstream and downstream processes. Upstream innovations include enhanced bioprocess designs that improve biomass yield, light and stress tolerance. Downstream, sustainable extraction methods such as aqueous two-phase systems with deep eutectic solvents (99.64% recovery) and high-pressure supercritical CO<sub>2</sub> extraction have improved efficiency and scalability. Additionally, eco-friendly techniques, such as bead milling and pulsed electric field permeabilization offer cost-effective solutions, among other cell disruption techniques, and ensure higher yields. This study provides a comprehensive overview of recent advances in astaxanthin production and extraction, aligned with the Sustainable Development Goals (SDGs) linked to health and well-being (SDG 3) and responsible consumption and production (SDG 12).</p>\",\"PeriodicalId\":10752,\"journal\":{\"name\":\"Critical Reviews in Biotechnology\",\"volume\":\" \",\"pages\":\"1-19\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07388551.2025.2537816\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2025.2537816","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

虾青素是一种天然的双酮类胡萝卜素叶黄素,由于其强大的健康益处,包括:抗炎,抗氧化,抗癌,心血管和抗糖尿病的作用,是一种非常有价值的营养保健和食品成分。本文综述了虾青素的主要天然来源:微藻、酵母、细菌和植物,重点介绍了虾青素的微藻,因为它们具有良好的积累潜力和生物活性。它探讨了大规模虾青素生产的日益增长的前景,突出了上游和下游工艺的进步。上游创新包括增强生物工艺设计,提高生物质产量,光和应力耐受性。下游,可持续的萃取方法,如采用深共晶溶剂的水两相体系(回收率99.64%)和高压超临界CO2萃取,提高了效率和可扩展性。此外,与其他细胞破坏技术相比,珠磨和脉冲电场渗透等环保技术提供了经济高效的解决方案,并确保了更高的产量。本研究根据与健康和福祉(可持续发展目标3)和负责任的消费和生产(可持续发展目标12)相关的可持续发展目标(SDG),全面概述了虾青素生产和提取的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Astaxanthin: nature's multifunctional molecule, natural sources, health benefits, and process advancements.

Astaxanthin, a natural di-keto carotenoid xanthophyll, is a highly valued nutraceutical and food ingredient due to its potent health benefits, including: anti-inflammatory, antioxidant, anti-cancer, cardiovascular, and anti-diabetic effects. This review examines the primary natural sources of: astaxanthin microalgae, yeast, bacteria, and plants, with a focus on microalgae due to their superior accumulation potential and bioactivity. It explores the growing prospects for large-scale astaxanthin production, highlighting advancements in both upstream and downstream processes. Upstream innovations include enhanced bioprocess designs that improve biomass yield, light and stress tolerance. Downstream, sustainable extraction methods such as aqueous two-phase systems with deep eutectic solvents (99.64% recovery) and high-pressure supercritical CO2 extraction have improved efficiency and scalability. Additionally, eco-friendly techniques, such as bead milling and pulsed electric field permeabilization offer cost-effective solutions, among other cell disruption techniques, and ensure higher yields. This study provides a comprehensive overview of recent advances in astaxanthin production and extraction, aligned with the Sustainable Development Goals (SDGs) linked to health and well-being (SDG 3) and responsible consumption and production (SDG 12).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Critical Reviews in Biotechnology
Critical Reviews in Biotechnology 工程技术-生物工程与应用微生物
CiteScore
20.80
自引率
1.10%
发文量
71
审稿时长
4.8 months
期刊介绍: Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信