泛醌Q10在帕金森病中的机制:线粒体保护、铁下垂抑制和抗氧化剂循环。

IF 2.7 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Mohamed J Saadh, Tamara Nazar Saeed, Ali Fawzi Al-Hussainy, Ashishkumar Kyada, Suhas Ballal, Mayank Kundlas, A Sabarivani, Jasur Rizaev, Sada Ghalib Taher, Mariem Alwan, Mahmood Jawad, Hiba Mushtaq
{"title":"泛醌Q10在帕金森病中的机制:线粒体保护、铁下垂抑制和抗氧化剂循环。","authors":"Mohamed J Saadh, Tamara Nazar Saeed, Ali Fawzi Al-Hussainy, Ashishkumar Kyada, Suhas Ballal, Mayank Kundlas, A Sabarivani, Jasur Rizaev, Sada Ghalib Taher, Mariem Alwan, Mahmood Jawad, Hiba Mushtaq","doi":"10.1080/13813455.2025.2541698","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Parkinson's disease is a progressive neurodegenerative disorder characterised by the loss of dopaminergic neurons in the substantia nigra. Although the exact cause of Parkinson's disease is still unknown, neuroinflammation and mitochondrial dysfunction have been identified as essential factors in the disease's pathophysiology.</p><p><strong>Methods: </strong>Coenzyme Q10 has gathered considerable attention as a potential therapeutic agent due to its dual function in antioxidant defense and mitochondrial bioenergetics. It is an essential electron carrier in the mitochondrial electron transport chain and plays a crucial role in reducing oxidative stress, a primary cause of neuronal degeneration in Parkinson's disease.</p><p><strong>Results: </strong>Coenzyme Q10 supplements can enhance mitochondrial activity, reduce oxidative stress, and protect dopaminergic neurons from degeneration. To improve Coenzyme Q10 formulations and ascertain its effectiveness in slowing the progression of Parkinson's disease, more study is required.</p><p><strong>Conclusion: </strong>This review examines the neuroprotective mechanisms of Coenzyme Q10 and its potential as a therapeutic option for Parkinson's disease.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":" ","pages":"1-17"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic insights into ubiquinone Q10 in Parkinson's disease: mitochondrial protection, ferroptosis inhibition, and antioxidant recycling.\",\"authors\":\"Mohamed J Saadh, Tamara Nazar Saeed, Ali Fawzi Al-Hussainy, Ashishkumar Kyada, Suhas Ballal, Mayank Kundlas, A Sabarivani, Jasur Rizaev, Sada Ghalib Taher, Mariem Alwan, Mahmood Jawad, Hiba Mushtaq\",\"doi\":\"10.1080/13813455.2025.2541698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Parkinson's disease is a progressive neurodegenerative disorder characterised by the loss of dopaminergic neurons in the substantia nigra. Although the exact cause of Parkinson's disease is still unknown, neuroinflammation and mitochondrial dysfunction have been identified as essential factors in the disease's pathophysiology.</p><p><strong>Methods: </strong>Coenzyme Q10 has gathered considerable attention as a potential therapeutic agent due to its dual function in antioxidant defense and mitochondrial bioenergetics. It is an essential electron carrier in the mitochondrial electron transport chain and plays a crucial role in reducing oxidative stress, a primary cause of neuronal degeneration in Parkinson's disease.</p><p><strong>Results: </strong>Coenzyme Q10 supplements can enhance mitochondrial activity, reduce oxidative stress, and protect dopaminergic neurons from degeneration. To improve Coenzyme Q10 formulations and ascertain its effectiveness in slowing the progression of Parkinson's disease, more study is required.</p><p><strong>Conclusion: </strong>This review examines the neuroprotective mechanisms of Coenzyme Q10 and its potential as a therapeutic option for Parkinson's disease.</p>\",\"PeriodicalId\":8331,\"journal\":{\"name\":\"Archives of Physiology and Biochemistry\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Physiology and Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/13813455.2025.2541698\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Physiology and Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13813455.2025.2541698","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

背景:帕金森病是一种进行性神经退行性疾病,其特征是黑质中多巴胺能神经元的丧失。虽然帕金森病的确切病因尚不清楚,但神经炎症和线粒体功能障碍已被确定为该疾病病理生理学的重要因素。方法:由于辅酶Q10具有抗氧化防御和线粒体生物能量学的双重功能,作为一种潜在的治疗剂受到了广泛的关注。它是线粒体电子传递链中必不可少的电子载体,在减少氧化应激中起着至关重要的作用,氧化应激是帕金森病神经元变性的主要原因。结果:辅酶Q10补充剂可以增强线粒体活性,减少氧化应激,保护多巴胺能神经元免受变性。为了改进辅酶Q10的配方并确定其在减缓帕金森病进展方面的有效性,还需要进行更多的研究。结论:本文综述了辅酶Q10的神经保护机制及其作为帕金森病治疗选择的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanistic insights into ubiquinone Q10 in Parkinson's disease: mitochondrial protection, ferroptosis inhibition, and antioxidant recycling.

Background: Parkinson's disease is a progressive neurodegenerative disorder characterised by the loss of dopaminergic neurons in the substantia nigra. Although the exact cause of Parkinson's disease is still unknown, neuroinflammation and mitochondrial dysfunction have been identified as essential factors in the disease's pathophysiology.

Methods: Coenzyme Q10 has gathered considerable attention as a potential therapeutic agent due to its dual function in antioxidant defense and mitochondrial bioenergetics. It is an essential electron carrier in the mitochondrial electron transport chain and plays a crucial role in reducing oxidative stress, a primary cause of neuronal degeneration in Parkinson's disease.

Results: Coenzyme Q10 supplements can enhance mitochondrial activity, reduce oxidative stress, and protect dopaminergic neurons from degeneration. To improve Coenzyme Q10 formulations and ascertain its effectiveness in slowing the progression of Parkinson's disease, more study is required.

Conclusion: This review examines the neuroprotective mechanisms of Coenzyme Q10 and its potential as a therapeutic option for Parkinson's disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Physiology and Biochemistry
Archives of Physiology and Biochemistry ENDOCRINOLOGY & METABOLISM-PHYSIOLOGY
CiteScore
6.90
自引率
3.30%
发文量
21
期刊介绍: Archives of Physiology and Biochemistry: The Journal of Metabolic Diseases is an international peer-reviewed journal which has been relaunched to meet the increasing demand for integrated publication on molecular, biochemical and cellular aspects of metabolic diseases, as well as clinical and therapeutic strategies for their treatment. It publishes full-length original articles, rapid papers, reviews and mini-reviews on selected topics. It is the overall goal of the journal to disseminate novel approaches to an improved understanding of major metabolic disorders. The scope encompasses all topics related to the molecular and cellular pathophysiology of metabolic diseases like obesity, type 2 diabetes and the metabolic syndrome, and their associated complications. Clinical studies are considered as an integral part of the Journal and should be related to one of the following topics: -Dysregulation of hormone receptors and signal transduction -Contribution of gene variants and gene regulatory processes -Impairment of intermediary metabolism at the cellular level -Secretion and metabolism of peptides and other factors that mediate cellular crosstalk -Therapeutic strategies for managing metabolic diseases Special issues dedicated to topics in the field will be published regularly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信