了解倏逝场在衰减全反射光谱学中的作用。

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION
Thomas G Mayerhöfer, Jürgen Popp
{"title":"了解倏逝场在衰减全反射光谱学中的作用。","authors":"Thomas G Mayerhöfer, Jürgen Popp","doi":"10.1177/00037028251358400","DOIUrl":null,"url":null,"abstract":"<p><p>In attenuated total reflection (ATR) spectroscopy, the presence of an evanescent field penetrating the sample is generally considered crucial. However, according to wave optics, this evanescent field vanishes when the rarer medium is absorbing, and the attenuation of total reflection results from transmission into this medium. While the evanescent field may not play a significant role in this scenario, a closer examination of the relevant relationships reveals that the system's properties vary smoothly with both the angle of incidence and the imaginary part of the dielectric function. This effect can be further illustrated by comparing electric field maps and spectra for semi-infinite rarer media with those for rarer media composed of layers with thicknesses on the order of the wavelength. In the latter case, ATR spectra can be recorded well below the critical angle, where no evanescent field exists. If the layer is vacuum and the underlying semi-infinite medium is assumed to have the same refractive index but is weakly absorbing, tunneling and frustrated total reflection can be observed. Reflecting on our results, we can now define the critical angle in the presence of absorption as the point at which the real and imaginary parts of the perpendicular component of the wavevector become equal. Overall, we conclude that evanescent waves play little to no significant role. Any deviation from total reflection can be attributed to transmission through the ATR crystal-medium interface.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028251358400"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the Role of the Evanescent Field in Attenuated Total Reflection (ATR) Spectroscopy.\",\"authors\":\"Thomas G Mayerhöfer, Jürgen Popp\",\"doi\":\"10.1177/00037028251358400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In attenuated total reflection (ATR) spectroscopy, the presence of an evanescent field penetrating the sample is generally considered crucial. However, according to wave optics, this evanescent field vanishes when the rarer medium is absorbing, and the attenuation of total reflection results from transmission into this medium. While the evanescent field may not play a significant role in this scenario, a closer examination of the relevant relationships reveals that the system's properties vary smoothly with both the angle of incidence and the imaginary part of the dielectric function. This effect can be further illustrated by comparing electric field maps and spectra for semi-infinite rarer media with those for rarer media composed of layers with thicknesses on the order of the wavelength. In the latter case, ATR spectra can be recorded well below the critical angle, where no evanescent field exists. If the layer is vacuum and the underlying semi-infinite medium is assumed to have the same refractive index but is weakly absorbing, tunneling and frustrated total reflection can be observed. Reflecting on our results, we can now define the critical angle in the presence of absorption as the point at which the real and imaginary parts of the perpendicular component of the wavevector become equal. Overall, we conclude that evanescent waves play little to no significant role. Any deviation from total reflection can be attributed to transmission through the ATR crystal-medium interface.</p>\",\"PeriodicalId\":8253,\"journal\":{\"name\":\"Applied Spectroscopy\",\"volume\":\" \",\"pages\":\"37028251358400\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028251358400\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028251358400","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

在衰减全反射(ATR)光谱中,穿透样品的倏逝场的存在通常被认为是至关重要的。然而,根据波动光学,当更稀有的介质被吸收时,这种倏逝场就会消失,并且全反射的衰减是由透射到这种介质引起的。虽然在这种情况下,倏逝场可能没有发挥重要作用,但对相关关系的仔细研究表明,系统的性质随入射角和介电函数的虚部平滑变化。这种效应可以通过比较半无限稀有介质和由厚度为波长数量级的层组成的稀有介质的电场图和光谱来进一步说明。在后一种情况下,ATR光谱可以记录在远低于临界角的地方,在那里不存在消失场。如果层是真空的,假定下面的半无限介质具有相同的折射率,但弱吸收,则可以观察到隧穿和受挫全反射。反思我们的结果,我们现在可以定义吸收存在时的临界角为波矢量垂直分量的实部和虚部相等的点。总的来说,我们得出的结论是,倏逝波的作用很小,甚至没有显著作用。任何与全反射的偏差都可以归因于通过ATR晶体-介质界面的传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding the Role of the Evanescent Field in Attenuated Total Reflection (ATR) Spectroscopy.

In attenuated total reflection (ATR) spectroscopy, the presence of an evanescent field penetrating the sample is generally considered crucial. However, according to wave optics, this evanescent field vanishes when the rarer medium is absorbing, and the attenuation of total reflection results from transmission into this medium. While the evanescent field may not play a significant role in this scenario, a closer examination of the relevant relationships reveals that the system's properties vary smoothly with both the angle of incidence and the imaginary part of the dielectric function. This effect can be further illustrated by comparing electric field maps and spectra for semi-infinite rarer media with those for rarer media composed of layers with thicknesses on the order of the wavelength. In the latter case, ATR spectra can be recorded well below the critical angle, where no evanescent field exists. If the layer is vacuum and the underlying semi-infinite medium is assumed to have the same refractive index but is weakly absorbing, tunneling and frustrated total reflection can be observed. Reflecting on our results, we can now define the critical angle in the presence of absorption as the point at which the real and imaginary parts of the perpendicular component of the wavevector become equal. Overall, we conclude that evanescent waves play little to no significant role. Any deviation from total reflection can be attributed to transmission through the ATR crystal-medium interface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信