无酶超声分离细胞增强球形细胞聚集。

IF 2.6 3区 生物学 Q3 MATERIALS SCIENCE, BIOMATERIALS
Julien van Delft, Chikahiro Imashiro, Yuta Kurashina, Makoto Hirano, Jun Homma, Shinsuke Mochizuki, Hideharu Shimozawa, Kenjiro Takemura
{"title":"无酶超声分离细胞增强球形细胞聚集。","authors":"Julien van Delft,&nbsp;Chikahiro Imashiro,&nbsp;Yuta Kurashina,&nbsp;Makoto Hirano,&nbsp;Jun Homma,&nbsp;Shinsuke Mochizuki,&nbsp;Hideharu Shimozawa,&nbsp;Kenjiro Takemura","doi":"10.1002/adbi.202500092","DOIUrl":null,"url":null,"abstract":"<p>Spheroids are being widely studied as potential building blocks for complex organ engineering, tools for drug screening and cancer study. However, formation time has become the bottleneck of applications due to the need for large-scale high-quality spheroids production. Formation time is often dominated by ECM construction and not cell aggregation. Therefore, this study focuses on the influence of ultrasound detachment replacing conventional enzyme detachment on spheroid formation processes. Thanks to cell surface protein preservation in ultrasound detachment, cell aggregation time is reduced while decreasing the formation variabilities. Moreover, it is confirmed that cells are intrinsically more capable of aggregating through enzyme-free detachment. On top of that, transplantations into rats showed equally successful engraftment properties for enzyme-free detached cells. Finally, the impact on the real co-cultured spheroid application was shown to be beneficial through more localized cell groups inside of the spheroids, possibly improving therapeutic effects and vascularization. Through this study, it is proved that ultrasound detachment can replace enzyme detachment without degrading the final spheroid properties but reducing the formation time, and variability and improving robustness and cell distribution. This opens up a new range of applications for better and faster spheroid formation in numerous bioengineering applications.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"9 8","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adbi.202500092","citationCount":"0","resultStr":"{\"title\":\"Spheroid Cell Aggregation Enhanced by Enzyme-Free Ultrasound-Detached Cells\",\"authors\":\"Julien van Delft,&nbsp;Chikahiro Imashiro,&nbsp;Yuta Kurashina,&nbsp;Makoto Hirano,&nbsp;Jun Homma,&nbsp;Shinsuke Mochizuki,&nbsp;Hideharu Shimozawa,&nbsp;Kenjiro Takemura\",\"doi\":\"10.1002/adbi.202500092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spheroids are being widely studied as potential building blocks for complex organ engineering, tools for drug screening and cancer study. However, formation time has become the bottleneck of applications due to the need for large-scale high-quality spheroids production. Formation time is often dominated by ECM construction and not cell aggregation. Therefore, this study focuses on the influence of ultrasound detachment replacing conventional enzyme detachment on spheroid formation processes. Thanks to cell surface protein preservation in ultrasound detachment, cell aggregation time is reduced while decreasing the formation variabilities. Moreover, it is confirmed that cells are intrinsically more capable of aggregating through enzyme-free detachment. On top of that, transplantations into rats showed equally successful engraftment properties for enzyme-free detached cells. Finally, the impact on the real co-cultured spheroid application was shown to be beneficial through more localized cell groups inside of the spheroids, possibly improving therapeutic effects and vascularization. Through this study, it is proved that ultrasound detachment can replace enzyme detachment without degrading the final spheroid properties but reducing the formation time, and variability and improving robustness and cell distribution. This opens up a new range of applications for better and faster spheroid formation in numerous bioengineering applications.</p>\",\"PeriodicalId\":7234,\"journal\":{\"name\":\"Advanced biology\",\"volume\":\"9 8\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adbi.202500092\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adbi.202500092\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adbi.202500092","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

作为复杂器官工程、药物筛选和癌症研究的工具,球体正被广泛研究。然而,由于需要大规模生产高质量球体,地层时间已成为应用的瓶颈。形成时间通常由ECM构建而非细胞聚集决定。因此,本研究的重点是超声剥离取代常规酶剥离对球体形成过程的影响。由于超声分离中细胞表面蛋白的保存,减少了细胞聚集时间,同时降低了形成的可变性。此外,它证实了细胞本质上更有能力通过无酶分离聚集。最重要的是,移植到大鼠身上的无酶分离细胞也显示出同样成功的植入特性。最后,对实际共培养球体应用的影响被证明是有益的,通过球体内部更多的局部细胞群,可能改善治疗效果和血管化。通过本研究证明,超声分离可以代替酶分离,而不会降低最终的球形性质,但可以减少形成时间和变变性,提高鲁棒性和细胞分布。这为在众多生物工程应用中更好更快地形成球体开辟了新的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spheroid Cell Aggregation Enhanced by Enzyme-Free Ultrasound-Detached Cells

Spheroid Cell Aggregation Enhanced by Enzyme-Free Ultrasound-Detached Cells

Spheroid Cell Aggregation Enhanced by Enzyme-Free Ultrasound-Detached Cells

Spheroid Cell Aggregation Enhanced by Enzyme-Free Ultrasound-Detached Cells

Spheroid Cell Aggregation Enhanced by Enzyme-Free Ultrasound-Detached Cells

Spheroids are being widely studied as potential building blocks for complex organ engineering, tools for drug screening and cancer study. However, formation time has become the bottleneck of applications due to the need for large-scale high-quality spheroids production. Formation time is often dominated by ECM construction and not cell aggregation. Therefore, this study focuses on the influence of ultrasound detachment replacing conventional enzyme detachment on spheroid formation processes. Thanks to cell surface protein preservation in ultrasound detachment, cell aggregation time is reduced while decreasing the formation variabilities. Moreover, it is confirmed that cells are intrinsically more capable of aggregating through enzyme-free detachment. On top of that, transplantations into rats showed equally successful engraftment properties for enzyme-free detached cells. Finally, the impact on the real co-cultured spheroid application was shown to be beneficial through more localized cell groups inside of the spheroids, possibly improving therapeutic effects and vascularization. Through this study, it is proved that ultrasound detachment can replace enzyme detachment without degrading the final spheroid properties but reducing the formation time, and variability and improving robustness and cell distribution. This opens up a new range of applications for better and faster spheroid formation in numerous bioengineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced biology
Advanced biology Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
6.60
自引率
0.00%
发文量
130
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信