含氮物质热化学性质的预测:量子化学计算和基团可加性方法。

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Xin Wang, Frederick Nii Ofei Bruce, Xuan Ren, Siyu Cheng, Yinjun Chen, Ruining He, Xin Bai, Shuyuan Liu, Fang Wang, Yiheng Tong, Wei Lin, Xu Xia, Xiaolong Fu, Yun Hin Taufiq-Yap, Henry J. Curran and Yang Li*, 
{"title":"含氮物质热化学性质的预测:量子化学计算和基团可加性方法。","authors":"Xin Wang,&nbsp;Frederick Nii Ofei Bruce,&nbsp;Xuan Ren,&nbsp;Siyu Cheng,&nbsp;Yinjun Chen,&nbsp;Ruining He,&nbsp;Xin Bai,&nbsp;Shuyuan Liu,&nbsp;Fang Wang,&nbsp;Yiheng Tong,&nbsp;Wei Lin,&nbsp;Xu Xia,&nbsp;Xiaolong Fu,&nbsp;Yun Hin Taufiq-Yap,&nbsp;Henry J. Curran and Yang Li*,&nbsp;","doi":"10.1021/acs.jpca.5c01264","DOIUrl":null,"url":null,"abstract":"<p >With the growing demand for nitrogen-containing sustainable fuels and propellants, accurately predicting their thermochemical properties has become increasingly important. While quantum chemical calculation (QC) methods and calorimetric experiments offer high precision, they are often time-consuming and computationally intensive. In contrast, the group additivity (GA) method provides a faster alternative. However, its accuracy typically declines for complex nitrogen-containing compounds. In this study, we calculated the thermochemical properties of 283 nitrogen-containing species using ab initio composite methods (G3, G4, CBS-APNO, CBS-QB3). The QC results were used to optimize 43 existing GA groups and to develop 32 new groups for nitrogen-containing structures. Compared to Active Thermochemical Tables (ATcT), the QC methods achieved a 95% confidence interval (CI) of ±1.173 kcal/mol for Δ<sub>f</sub><i>H</i>°<sub>0K</sub>. The optimized GA model (without the newly developed groups) achieved CIs of ±1.645 kcal/mol for Δ<sub>f</sub><i>H</i>°<sub>298K</sub> and ±4.222 cal/(mol·K) for entropy, with specific heat capacity (<i>C</i><sub>p</sub>) uncertainties ranging from ±1.144 to ±1.441 cal/(mol·K) over 300–1000 K. After adding the newly developed groups, the GA model improved, yielding CIs of ±1.894 kcal/mol for Δ<sub>f</sub><i>H</i>°<sub>298K</sub> and ±3.221 cal/(mol·K) for entropy. This work demonstrates an efficient framework for enhancing GA-based thermochemistry predictions using quantum data. This study’s results could enable more accurate combustion modeling, better control of nitrogen oxide emissions, and the design of advanced nitrogen-containing materials.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 32","pages":"7273–7286"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of the Thermochemical Properties of Nitrogen-Containing Species: A Quantum Chemical Calculation and Group Additivity Approach\",\"authors\":\"Xin Wang,&nbsp;Frederick Nii Ofei Bruce,&nbsp;Xuan Ren,&nbsp;Siyu Cheng,&nbsp;Yinjun Chen,&nbsp;Ruining He,&nbsp;Xin Bai,&nbsp;Shuyuan Liu,&nbsp;Fang Wang,&nbsp;Yiheng Tong,&nbsp;Wei Lin,&nbsp;Xu Xia,&nbsp;Xiaolong Fu,&nbsp;Yun Hin Taufiq-Yap,&nbsp;Henry J. Curran and Yang Li*,&nbsp;\",\"doi\":\"10.1021/acs.jpca.5c01264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >With the growing demand for nitrogen-containing sustainable fuels and propellants, accurately predicting their thermochemical properties has become increasingly important. While quantum chemical calculation (QC) methods and calorimetric experiments offer high precision, they are often time-consuming and computationally intensive. In contrast, the group additivity (GA) method provides a faster alternative. However, its accuracy typically declines for complex nitrogen-containing compounds. In this study, we calculated the thermochemical properties of 283 nitrogen-containing species using ab initio composite methods (G3, G4, CBS-APNO, CBS-QB3). The QC results were used to optimize 43 existing GA groups and to develop 32 new groups for nitrogen-containing structures. Compared to Active Thermochemical Tables (ATcT), the QC methods achieved a 95% confidence interval (CI) of ±1.173 kcal/mol for Δ<sub>f</sub><i>H</i>°<sub>0K</sub>. The optimized GA model (without the newly developed groups) achieved CIs of ±1.645 kcal/mol for Δ<sub>f</sub><i>H</i>°<sub>298K</sub> and ±4.222 cal/(mol·K) for entropy, with specific heat capacity (<i>C</i><sub>p</sub>) uncertainties ranging from ±1.144 to ±1.441 cal/(mol·K) over 300–1000 K. After adding the newly developed groups, the GA model improved, yielding CIs of ±1.894 kcal/mol for Δ<sub>f</sub><i>H</i>°<sub>298K</sub> and ±3.221 cal/(mol·K) for entropy. This work demonstrates an efficient framework for enhancing GA-based thermochemistry predictions using quantum data. This study’s results could enable more accurate combustion modeling, better control of nitrogen oxide emissions, and the design of advanced nitrogen-containing materials.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\"129 32\",\"pages\":\"7273–7286\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpca.5c01264\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.5c01264","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着对含氮可持续燃料和推进剂需求的不断增长,准确预测其热化学性质变得越来越重要。虽然量子化学计算(QC)方法和量热实验提供高精度,但它们通常是耗时和计算密集的。相反,群可加性(GA)方法提供了一种更快的替代方法。然而,对于复杂的含氮化合物,其准确性通常会下降。本研究采用从头算复合方法计算了283种含氮物质(G3, G4, CBS-APNO, CBS-QB3)的热化学性质。利用QC结果对现有的43个GA基团进行了优化,并开发了32个新的含氮结构基团。与活性热化学表(ATcT)相比,QC方法在ΔfH°0K下的95%置信区间(CI)为±1.173 kcal/mol。优化后的遗传模型(不含新开发的基团)对ΔfH°298K的ci值为±1.645 kcal/mol,对熵的ci值为±4.222 cal/(mol·K),在300-1000 K范围内比热容(Cp)的不确定度为±1.144 ~±1.441 cal/(mol·K)。在加入新建立的基团后,GA模型得到了改进,在ΔfH°298K下的ci值为±1.894 kcal/mol,熵值为±3.221 cal/(mol·K)。这项工作展示了一个使用量子数据增强基于ga的热化学预测的有效框架。这项研究的结果可以实现更精确的燃烧建模,更好地控制氮氧化物排放,以及设计先进的含氮材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Prediction of the Thermochemical Properties of Nitrogen-Containing Species: A Quantum Chemical Calculation and Group Additivity Approach

Prediction of the Thermochemical Properties of Nitrogen-Containing Species: A Quantum Chemical Calculation and Group Additivity Approach

With the growing demand for nitrogen-containing sustainable fuels and propellants, accurately predicting their thermochemical properties has become increasingly important. While quantum chemical calculation (QC) methods and calorimetric experiments offer high precision, they are often time-consuming and computationally intensive. In contrast, the group additivity (GA) method provides a faster alternative. However, its accuracy typically declines for complex nitrogen-containing compounds. In this study, we calculated the thermochemical properties of 283 nitrogen-containing species using ab initio composite methods (G3, G4, CBS-APNO, CBS-QB3). The QC results were used to optimize 43 existing GA groups and to develop 32 new groups for nitrogen-containing structures. Compared to Active Thermochemical Tables (ATcT), the QC methods achieved a 95% confidence interval (CI) of ±1.173 kcal/mol for ΔfH°0K. The optimized GA model (without the newly developed groups) achieved CIs of ±1.645 kcal/mol for ΔfH°298K and ±4.222 cal/(mol·K) for entropy, with specific heat capacity (Cp) uncertainties ranging from ±1.144 to ±1.441 cal/(mol·K) over 300–1000 K. After adding the newly developed groups, the GA model improved, yielding CIs of ±1.894 kcal/mol for ΔfH°298K and ±3.221 cal/(mol·K) for entropy. This work demonstrates an efficient framework for enhancing GA-based thermochemistry predictions using quantum data. This study’s results could enable more accurate combustion modeling, better control of nitrogen oxide emissions, and the design of advanced nitrogen-containing materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信