双等离子体蛋黄壳金Nanoplate@Cu2-xSe空心球增强近红外II光热转换。

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Qi He, Qiuping Yang, Xiaowen Chen, Yi Wang*, Xiaohu Wu*, Yanyun Ma, Feng Liu, Maochang Liu and Yiqun Zheng*, 
{"title":"双等离子体蛋黄壳金Nanoplate@Cu2-xSe空心球增强近红外II光热转换。","authors":"Qi He,&nbsp;Qiuping Yang,&nbsp;Xiaowen Chen,&nbsp;Yi Wang*,&nbsp;Xiaohu Wu*,&nbsp;Yanyun Ma,&nbsp;Feng Liu,&nbsp;Maochang Liu and Yiqun Zheng*,&nbsp;","doi":"10.1021/acs.langmuir.5c02478","DOIUrl":null,"url":null,"abstract":"<p >We report the design and synthesis of a dual-plasmonic yolk–shell nanostructure containing Au nanoplate@Cu<sub>2–<i>x</i></sub>Se hollow spheres with tunable selenium (Se) content, engineered to enhance NIR-II photothermal conversion performance. The fabrication process begins with the high-yield synthesis of Au nanoplates, which serve as both a structural template and a plasmonic core. A conformal Cu<sub>2</sub>O layer is then grown on the Au nanoplate surface, followed by controlled selenization to convert Cu<sub>2</sub>O into Cu<sub>2–<i>x</i></sub>Se, concurrently forming a yolk–shell architecture with a hollow interlayer. The Se content in Cu<sub>2–<i>x</i></sub>Se is systematically adjusted by varying the selenization conditions, enabling precise control over the shell composition, morphology, and optical absorption in the NIR-II region. The resultant products exhibit synergistic plasmonic responses from both the Au core and Cu<sub>2–<i>x</i></sub>Se shell, further validated by finite-difference time-domain (FDTD) simulations that confirm enhanced electromagnetic field confinement and broadened NIR absorption due to the dual-plasmonic coupling and hollow structural design. Spectroscopic and thermal characterization shows that the optimized products with tailored Se content achieve a high photothermal conversion efficiency of 45.32% under 1064 nm laser irradiation, attributed to their unique dual-plasmonic coupling, tunable composition, and hollow structure that enhances heat retention. This work demonstrates a facile strategy to engineer multicomponent plasmonic nanocomposites with tunable compositions, offering a promising platform for advanced NIR-responsive photothermal therapies.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 30","pages":"20195–20206"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Plasmonic Yolk–Shell Au Nanoplate@Cu2–xSe Hollow Spheres for Enhanced Near-Infrared II Photothermal Conversion\",\"authors\":\"Qi He,&nbsp;Qiuping Yang,&nbsp;Xiaowen Chen,&nbsp;Yi Wang*,&nbsp;Xiaohu Wu*,&nbsp;Yanyun Ma,&nbsp;Feng Liu,&nbsp;Maochang Liu and Yiqun Zheng*,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.5c02478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We report the design and synthesis of a dual-plasmonic yolk–shell nanostructure containing Au nanoplate@Cu<sub>2–<i>x</i></sub>Se hollow spheres with tunable selenium (Se) content, engineered to enhance NIR-II photothermal conversion performance. The fabrication process begins with the high-yield synthesis of Au nanoplates, which serve as both a structural template and a plasmonic core. A conformal Cu<sub>2</sub>O layer is then grown on the Au nanoplate surface, followed by controlled selenization to convert Cu<sub>2</sub>O into Cu<sub>2–<i>x</i></sub>Se, concurrently forming a yolk–shell architecture with a hollow interlayer. The Se content in Cu<sub>2–<i>x</i></sub>Se is systematically adjusted by varying the selenization conditions, enabling precise control over the shell composition, morphology, and optical absorption in the NIR-II region. The resultant products exhibit synergistic plasmonic responses from both the Au core and Cu<sub>2–<i>x</i></sub>Se shell, further validated by finite-difference time-domain (FDTD) simulations that confirm enhanced electromagnetic field confinement and broadened NIR absorption due to the dual-plasmonic coupling and hollow structural design. Spectroscopic and thermal characterization shows that the optimized products with tailored Se content achieve a high photothermal conversion efficiency of 45.32% under 1064 nm laser irradiation, attributed to their unique dual-plasmonic coupling, tunable composition, and hollow structure that enhances heat retention. This work demonstrates a facile strategy to engineer multicomponent plasmonic nanocomposites with tunable compositions, offering a promising platform for advanced NIR-responsive photothermal therapies.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 30\",\"pages\":\"20195–20206\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c02478\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c02478","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们报道了一种双等离子体蛋黄壳纳米结构的设计和合成,该结构含有Au nanoplate@Cu2-xSe具有可调硒(Se)含量的空心球,旨在提高NIR-II光热转换性能。制造过程从金纳米板的高产率合成开始,金纳米板既是结构模板又是等离子体核心。然后在Au纳米板表面生长出一层共形Cu2O层,然后通过控制硒化将Cu2O转化为Cu2-xSe,同时形成带有中空中间层的蛋黄壳结构。通过改变硒化条件,可以系统地调节Cu2-xSe中的Se含量,从而精确控制NIR-II区的壳层组成、形貌和光学吸收。所得产物在Au核和Cu2-xSe壳层均表现出协同等离子体响应,并通过时域有限差分(FDTD)模拟进一步验证,证实了由于双等离子体耦合和空心结构设计,增强了电磁场约束和扩大了近红外吸收。光谱和热特性分析表明,在1064 nm激光照射下,具有定制硒含量的优化产物的光热转换效率高达45.32%,这主要归功于其独特的双等离子体耦合、可调谐的成分和增强保热性的中空结构。这项工作展示了一种简单的策略来设计具有可调成分的多组分等离子体纳米复合材料,为先进的nir响应光热疗法提供了一个有前途的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual-Plasmonic Yolk–Shell Au Nanoplate@Cu2–xSe Hollow Spheres for Enhanced Near-Infrared II Photothermal Conversion

Dual-Plasmonic Yolk–Shell Au Nanoplate@Cu2–xSe Hollow Spheres for Enhanced Near-Infrared II Photothermal Conversion

We report the design and synthesis of a dual-plasmonic yolk–shell nanostructure containing Au nanoplate@Cu2–xSe hollow spheres with tunable selenium (Se) content, engineered to enhance NIR-II photothermal conversion performance. The fabrication process begins with the high-yield synthesis of Au nanoplates, which serve as both a structural template and a plasmonic core. A conformal Cu2O layer is then grown on the Au nanoplate surface, followed by controlled selenization to convert Cu2O into Cu2–xSe, concurrently forming a yolk–shell architecture with a hollow interlayer. The Se content in Cu2–xSe is systematically adjusted by varying the selenization conditions, enabling precise control over the shell composition, morphology, and optical absorption in the NIR-II region. The resultant products exhibit synergistic plasmonic responses from both the Au core and Cu2–xSe shell, further validated by finite-difference time-domain (FDTD) simulations that confirm enhanced electromagnetic field confinement and broadened NIR absorption due to the dual-plasmonic coupling and hollow structural design. Spectroscopic and thermal characterization shows that the optimized products with tailored Se content achieve a high photothermal conversion efficiency of 45.32% under 1064 nm laser irradiation, attributed to their unique dual-plasmonic coupling, tunable composition, and hollow structure that enhances heat retention. This work demonstrates a facile strategy to engineer multicomponent plasmonic nanocomposites with tunable compositions, offering a promising platform for advanced NIR-responsive photothermal therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信