离散Camassa-Holm方程的拟线性哈密顿摄动的KAM

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Xiaoping Wu, Ying Fu, Changzheng Qu
{"title":"离散Camassa-Holm方程的拟线性哈密顿摄动的KAM","authors":"Xiaoping Wu,&nbsp;Ying Fu,&nbsp;Changzheng Qu","doi":"10.1111/sapm.70088","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The Camassa–Holm (CH) equation, which serves as the dual to the Korteweg–de Vries (KdV) equation, is a completely integrable equation that admits peaked solitons. In this paper, we establish the KAM theory for quasi-linear Hamiltonian perturbations of the dispersive CH equation over the circle. The existence and linear stability of Cantor families of small-amplitude quasi-periodic solutions of this model are proved. Our proof generalizes the arguments for the Degasperis–Procesi equation and makes use of the Birkhoff normal form technique, a Nash–Moser iterative scheme in Sobolev scales and a reduction procedure. Both the Hamiltonian and reversible structures of the equation are fully utilized in our approach. In the reversible case, some new properties of the Birkhoff maps are explored to set up the reversibility of the linearized operator. In addition, a new technique on a presupposed hypothesis of the relation between the perturbed and unperturbed frequencies is proposed to tackle a parameter-independent quasi-linear equation with reversible structure.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"155 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KAM for Quasi-Linear Hamiltonian Perturbations of the Dispersive Camassa–Holm Equation\",\"authors\":\"Xiaoping Wu,&nbsp;Ying Fu,&nbsp;Changzheng Qu\",\"doi\":\"10.1111/sapm.70088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The Camassa–Holm (CH) equation, which serves as the dual to the Korteweg–de Vries (KdV) equation, is a completely integrable equation that admits peaked solitons. In this paper, we establish the KAM theory for quasi-linear Hamiltonian perturbations of the dispersive CH equation over the circle. The existence and linear stability of Cantor families of small-amplitude quasi-periodic solutions of this model are proved. Our proof generalizes the arguments for the Degasperis–Procesi equation and makes use of the Birkhoff normal form technique, a Nash–Moser iterative scheme in Sobolev scales and a reduction procedure. Both the Hamiltonian and reversible structures of the equation are fully utilized in our approach. In the reversible case, some new properties of the Birkhoff maps are explored to set up the reversibility of the linearized operator. In addition, a new technique on a presupposed hypothesis of the relation between the perturbed and unperturbed frequencies is proposed to tackle a parameter-independent quasi-linear equation with reversible structure.</p></div>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"155 2\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70088\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70088","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Camassa-Holm (CH)方程作为Korteweg-de Vries (KdV)方程的对偶,是一个允许峰值孤子的完全可积方程。本文建立了色散CH方程在圆上的准线性哈密顿摄动的KAM理论。证明了该模型小振幅拟周期解Cantor族的存在性和线性稳定性。我们的证明推广了Degasperis-Procesi方程的论点,并利用了Birkhoff范式技术、Sobolev尺度下的Nash-Moser迭代格式和约简过程。我们的方法充分利用了方程的哈密顿结构和可逆结构。在可逆情况下,研究了Birkhoff映射的一些新性质,建立了线性化算子的可逆性。此外,提出了一种基于摄动频率与非摄动频率关系的假设方法来求解具有可逆结构的参数无关拟线性方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KAM for Quasi-Linear Hamiltonian Perturbations of the Dispersive Camassa–Holm Equation

The Camassa–Holm (CH) equation, which serves as the dual to the Korteweg–de Vries (KdV) equation, is a completely integrable equation that admits peaked solitons. In this paper, we establish the KAM theory for quasi-linear Hamiltonian perturbations of the dispersive CH equation over the circle. The existence and linear stability of Cantor families of small-amplitude quasi-periodic solutions of this model are proved. Our proof generalizes the arguments for the Degasperis–Procesi equation and makes use of the Birkhoff normal form technique, a Nash–Moser iterative scheme in Sobolev scales and a reduction procedure. Both the Hamiltonian and reversible structures of the equation are fully utilized in our approach. In the reversible case, some new properties of the Birkhoff maps are explored to set up the reversibility of the linearized operator. In addition, a new technique on a presupposed hypothesis of the relation between the perturbed and unperturbed frequencies is proposed to tackle a parameter-independent quasi-linear equation with reversible structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信