m$ m$场中耦合Korteweg-de-Vries方程的出现

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Sharath Jose, Manas Kulkarni, Vishal Vasan
{"title":"m$ m$场中耦合Korteweg-de-Vries方程的出现","authors":"Sharath Jose,&nbsp;Manas Kulkarni,&nbsp;Vishal Vasan","doi":"10.1111/sapm.70090","DOIUrl":null,"url":null,"abstract":"<p>The Korteweg–de-Vries (KdV) equation is of fundamental importance in a wide range of subjects with generalization to multi-component systems relevant for multi-species fluids and cold atomic mixtures. We present a general framework in which a family of multi-component KdV (mcKdV) equations naturally arises from a broader mathematical structure under reasonable assumptions on the nature of the nonlinear couplings. In particular, we derive a universal form for such a system of <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> coupled KdV-type equations that is parameterized by <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> non-zero real numbers and two symmetric functions of those <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> numbers. Second, we show that physically relevant setups such as <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>≥</mo>\n <mi>m</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$N\\ge m+1$</annotation>\n </semantics></math> multi-component nonlinear Schrödinger equations (mcNLS), under scaling and perturbative treatment, reduce to such a mcKdV equation for a specific choice of the symmetric functions. The reduction from mcNLS to mcKdV requires one to be in a suitable parameter regime where the associated sound speeds of mcNLS are repeated. Hence, we connect the assumptions made in the derivation of the mcKdV system to physically interpretable assumptions for the mcNLS equation. Lastly, our approach provides a systematic foundation for facilitating a natural emergence of multi-component partial differential equations starting from a general mathematical structure.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"155 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70090","citationCount":"0","resultStr":"{\"title\":\"Emergence of Coupled Korteweg–de-Vries Equations in \\n \\n m\\n $m$\\n Fields\",\"authors\":\"Sharath Jose,&nbsp;Manas Kulkarni,&nbsp;Vishal Vasan\",\"doi\":\"10.1111/sapm.70090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Korteweg–de-Vries (KdV) equation is of fundamental importance in a wide range of subjects with generalization to multi-component systems relevant for multi-species fluids and cold atomic mixtures. We present a general framework in which a family of multi-component KdV (mcKdV) equations naturally arises from a broader mathematical structure under reasonable assumptions on the nature of the nonlinear couplings. In particular, we derive a universal form for such a system of <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math> coupled KdV-type equations that is parameterized by <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math> non-zero real numbers and two symmetric functions of those <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math> numbers. Second, we show that physically relevant setups such as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>≥</mo>\\n <mi>m</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$N\\\\ge m+1$</annotation>\\n </semantics></math> multi-component nonlinear Schrödinger equations (mcNLS), under scaling and perturbative treatment, reduce to such a mcKdV equation for a specific choice of the symmetric functions. The reduction from mcNLS to mcKdV requires one to be in a suitable parameter regime where the associated sound speeds of mcNLS are repeated. Hence, we connect the assumptions made in the derivation of the mcKdV system to physically interpretable assumptions for the mcNLS equation. Lastly, our approach provides a systematic foundation for facilitating a natural emergence of multi-component partial differential equations starting from a general mathematical structure.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"155 2\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70090\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70090\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70090","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Korteweg-de-Vries (KdV)方程在广泛的学科中具有重要的基础意义,可以推广到与多组分流体和冷原子混合物相关的多组分系统。我们提出了一个一般框架,在该框架中,在对非线性耦合性质的合理假设下,一组多分量KdV (mcKdV)方程自然地从更广泛的数学结构中产生。特别地,我们导出了由m$ m$非零实数和这些m$ m$数的两个对称函数参数化的m$ m$耦合kdv型方程组的一般形式。其次,我们证明了物理上相关的设置,如N≥m+1$ N\ge m+1$多分量非线性Schrödinger方程(mcNLS),在标度和微扰处理下,对于特定选择的对称函数,可以简化为这样的mcKdV方程。从mcNLS到mcKdV的降低需要一个合适的参数范围,其中mcNLS的相关声速是重复的。因此,我们将mcKdV系统推导中的假设与mcNLS方程的物理可解释假设联系起来。最后,我们的方法为促进从一般数学结构开始的多分量偏微分方程的自然出现提供了系统的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emergence of Coupled Korteweg–de-Vries Equations in m $m$ Fields

The Korteweg–de-Vries (KdV) equation is of fundamental importance in a wide range of subjects with generalization to multi-component systems relevant for multi-species fluids and cold atomic mixtures. We present a general framework in which a family of multi-component KdV (mcKdV) equations naturally arises from a broader mathematical structure under reasonable assumptions on the nature of the nonlinear couplings. In particular, we derive a universal form for such a system of m $m$ coupled KdV-type equations that is parameterized by m $m$ non-zero real numbers and two symmetric functions of those m $m$ numbers. Second, we show that physically relevant setups such as N m + 1 $N\ge m+1$ multi-component nonlinear Schrödinger equations (mcNLS), under scaling and perturbative treatment, reduce to such a mcKdV equation for a specific choice of the symmetric functions. The reduction from mcNLS to mcKdV requires one to be in a suitable parameter regime where the associated sound speeds of mcNLS are repeated. Hence, we connect the assumptions made in the derivation of the mcKdV system to physically interpretable assumptions for the mcNLS equation. Lastly, our approach provides a systematic foundation for facilitating a natural emergence of multi-component partial differential equations starting from a general mathematical structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信