Ke Wei, Daming Feng, Dongdong Fan, Junling Chen, Qiwei Du, Jingsong Xue, Guibin Zhong, Jianwei Chen
{"title":"CircZNF418通过靶向HuR/SIRT6轴来防止氧化应激诱导的铁凋亡和衰老,从而预防椎间盘退变","authors":"Ke Wei, Daming Feng, Dongdong Fan, Junling Chen, Qiwei Du, Jingsong Xue, Guibin Zhong, Jianwei Chen","doi":"10.1002/iub.70049","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Intervertebral disc degeneration (IVDD) is a common degenerative disorder affecting the spine. Ferroptosis and cellular senescence are key pathological features driving IVDD progression, but the mechanisms involved in their regulation remain incompletely understood. While circular RNAs (circRNAs) have been implicated in nucleus pulposus cells (NPCs) function, the specific role of circZNF418 in IVDD has not been explored. In this study, we aimed to investigate the function and mechanism of circZNF418 in IVDD, focusing on its impact on oxidative stress-induced ferroptosis and senescence in NPCs. NPCs were treated with tert-butyl hydroperoxide to mimic oxidative stress during IVDD progression. The levels of malondialdehyde (MDA) and glutathione (GSH) were quantified using commercial kits, and senescence was assessed using SA-β-gal staining. Gene and protein expression was analyzed using qPCR, Western blotting, immunofluorescence, and immunohistochemistry. RNA pull-down and immunoprecipitation were used to examine interactions among circZNF418, HuR, and SIRT6. circZNF418 levels were found to be lower in degenerative nucleus pulposus tissues, associated with increased ferroptosis and cellular senescence. circZNF418 expression declined in response to oxidative stress and was correlated with increased NPC senescence and ferroptosis. Overexpression of circZNF418 protected NPCs from oxidative damage, while its knockdown exacerbated senescence and ferroptosis. Silencing of SIRT6 partially reversed the protective effects of circZNF418 overexpression. Additionally, both circZNF418 and SIRT6 were shown to bind to HuR, with circZNF418 promoting SIRT6 expression, which was reversed by HuR silencing. The findings indicate that circZNF418 regulates NPC senescence and ferroptosis by upregulating SIRT6. A novel signaling pathway, the novel circZNF418/HuR/SIRT6 axis, was identified, showing its potential in IVDD therapy, while circZNF418 was identified as a potential target, thus providing new diagnostic biomarkers and the development of effective treatments for IVDD.</p>\n </div>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"77 8","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CircZNF418 Prevents Intervertebral Disc Degeneration by Targeting the HuR/SIRT6 Axis to Protect Against Oxidative Stress-Induced Ferroptosis and Senescence\",\"authors\":\"Ke Wei, Daming Feng, Dongdong Fan, Junling Chen, Qiwei Du, Jingsong Xue, Guibin Zhong, Jianwei Chen\",\"doi\":\"10.1002/iub.70049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Intervertebral disc degeneration (IVDD) is a common degenerative disorder affecting the spine. Ferroptosis and cellular senescence are key pathological features driving IVDD progression, but the mechanisms involved in their regulation remain incompletely understood. While circular RNAs (circRNAs) have been implicated in nucleus pulposus cells (NPCs) function, the specific role of circZNF418 in IVDD has not been explored. In this study, we aimed to investigate the function and mechanism of circZNF418 in IVDD, focusing on its impact on oxidative stress-induced ferroptosis and senescence in NPCs. NPCs were treated with tert-butyl hydroperoxide to mimic oxidative stress during IVDD progression. The levels of malondialdehyde (MDA) and glutathione (GSH) were quantified using commercial kits, and senescence was assessed using SA-β-gal staining. Gene and protein expression was analyzed using qPCR, Western blotting, immunofluorescence, and immunohistochemistry. RNA pull-down and immunoprecipitation were used to examine interactions among circZNF418, HuR, and SIRT6. circZNF418 levels were found to be lower in degenerative nucleus pulposus tissues, associated with increased ferroptosis and cellular senescence. circZNF418 expression declined in response to oxidative stress and was correlated with increased NPC senescence and ferroptosis. Overexpression of circZNF418 protected NPCs from oxidative damage, while its knockdown exacerbated senescence and ferroptosis. Silencing of SIRT6 partially reversed the protective effects of circZNF418 overexpression. Additionally, both circZNF418 and SIRT6 were shown to bind to HuR, with circZNF418 promoting SIRT6 expression, which was reversed by HuR silencing. The findings indicate that circZNF418 regulates NPC senescence and ferroptosis by upregulating SIRT6. A novel signaling pathway, the novel circZNF418/HuR/SIRT6 axis, was identified, showing its potential in IVDD therapy, while circZNF418 was identified as a potential target, thus providing new diagnostic biomarkers and the development of effective treatments for IVDD.</p>\\n </div>\",\"PeriodicalId\":14728,\"journal\":{\"name\":\"IUBMB Life\",\"volume\":\"77 8\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUBMB Life\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://iubmb.onlinelibrary.wiley.com/doi/10.1002/iub.70049\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUBMB Life","FirstCategoryId":"99","ListUrlMain":"https://iubmb.onlinelibrary.wiley.com/doi/10.1002/iub.70049","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
CircZNF418 Prevents Intervertebral Disc Degeneration by Targeting the HuR/SIRT6 Axis to Protect Against Oxidative Stress-Induced Ferroptosis and Senescence
Intervertebral disc degeneration (IVDD) is a common degenerative disorder affecting the spine. Ferroptosis and cellular senescence are key pathological features driving IVDD progression, but the mechanisms involved in their regulation remain incompletely understood. While circular RNAs (circRNAs) have been implicated in nucleus pulposus cells (NPCs) function, the specific role of circZNF418 in IVDD has not been explored. In this study, we aimed to investigate the function and mechanism of circZNF418 in IVDD, focusing on its impact on oxidative stress-induced ferroptosis and senescence in NPCs. NPCs were treated with tert-butyl hydroperoxide to mimic oxidative stress during IVDD progression. The levels of malondialdehyde (MDA) and glutathione (GSH) were quantified using commercial kits, and senescence was assessed using SA-β-gal staining. Gene and protein expression was analyzed using qPCR, Western blotting, immunofluorescence, and immunohistochemistry. RNA pull-down and immunoprecipitation were used to examine interactions among circZNF418, HuR, and SIRT6. circZNF418 levels were found to be lower in degenerative nucleus pulposus tissues, associated with increased ferroptosis and cellular senescence. circZNF418 expression declined in response to oxidative stress and was correlated with increased NPC senescence and ferroptosis. Overexpression of circZNF418 protected NPCs from oxidative damage, while its knockdown exacerbated senescence and ferroptosis. Silencing of SIRT6 partially reversed the protective effects of circZNF418 overexpression. Additionally, both circZNF418 and SIRT6 were shown to bind to HuR, with circZNF418 promoting SIRT6 expression, which was reversed by HuR silencing. The findings indicate that circZNF418 regulates NPC senescence and ferroptosis by upregulating SIRT6. A novel signaling pathway, the novel circZNF418/HuR/SIRT6 axis, was identified, showing its potential in IVDD therapy, while circZNF418 was identified as a potential target, thus providing new diagnostic biomarkers and the development of effective treatments for IVDD.
期刊介绍:
IUBMB Life is the flagship journal of the International Union of Biochemistry and Molecular Biology and is devoted to the rapid publication of the most novel and significant original research articles, reviews, and hypotheses in the broadly defined fields of biochemistry, molecular biology, cell biology, and molecular medicine.