Aleksandra Kim, Christopher Mutel, Stefanie Hellweg
{"title":"生命周期评价中相关不确定性的全局敏感性分析","authors":"Aleksandra Kim, Christopher Mutel, Stefanie Hellweg","doi":"10.1111/jiec.70036","DOIUrl":null,"url":null,"abstract":"<p>Recent advances in research have made global sensitivity analysis of very large and highly linear life cycle assessment systems feasible. In this paper, we build on these developments to include sensitivity analysis of correlated parameters and nonlinear models. We augment numerical uncertainty propagation with Monte Carlo simulations (i) to include propagation of uncertainty from uncertain variables in parameterized inventory datasets; (ii) to account for correlations between process inputs and outputs and in particular incorporate the carbon balance of combustion activities; (iii) to employ published time-series data instead of static values for electricity generation market mixes in Europe; (iv) to ensure that inputs which are supposed to reach a fixed total (e.g., the percentage contributions of power sources to an electricity mix) actually do so consistently by using the Dirichlet distribution. We then iterate on existing global sensitivity analysis protocols for high-dimensional systems to improve their computational performance. To correctly calculate sensitivity rankings for correlated inputs, we use SHapley Additive exPlanations as feature importance metrics with gradient boosted trees. Our results for a case study of climate change impacts of an average Swiss household confirm that neglecting correlations limits the validity of uncertainty and sensitivity analysis. Our methodology and correlated sampling modules are given as open source code.</p>","PeriodicalId":16050,"journal":{"name":"Journal of Industrial Ecology","volume":"29 4","pages":"1090-1104"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global sensitivity analysis of correlated uncertainties in life cycle assessment\",\"authors\":\"Aleksandra Kim, Christopher Mutel, Stefanie Hellweg\",\"doi\":\"10.1111/jiec.70036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent advances in research have made global sensitivity analysis of very large and highly linear life cycle assessment systems feasible. In this paper, we build on these developments to include sensitivity analysis of correlated parameters and nonlinear models. We augment numerical uncertainty propagation with Monte Carlo simulations (i) to include propagation of uncertainty from uncertain variables in parameterized inventory datasets; (ii) to account for correlations between process inputs and outputs and in particular incorporate the carbon balance of combustion activities; (iii) to employ published time-series data instead of static values for electricity generation market mixes in Europe; (iv) to ensure that inputs which are supposed to reach a fixed total (e.g., the percentage contributions of power sources to an electricity mix) actually do so consistently by using the Dirichlet distribution. We then iterate on existing global sensitivity analysis protocols for high-dimensional systems to improve their computational performance. To correctly calculate sensitivity rankings for correlated inputs, we use SHapley Additive exPlanations as feature importance metrics with gradient boosted trees. Our results for a case study of climate change impacts of an average Swiss household confirm that neglecting correlations limits the validity of uncertainty and sensitivity analysis. Our methodology and correlated sampling modules are given as open source code.</p>\",\"PeriodicalId\":16050,\"journal\":{\"name\":\"Journal of Industrial Ecology\",\"volume\":\"29 4\",\"pages\":\"1090-1104\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jiec.70036\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jiec.70036","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Global sensitivity analysis of correlated uncertainties in life cycle assessment
Recent advances in research have made global sensitivity analysis of very large and highly linear life cycle assessment systems feasible. In this paper, we build on these developments to include sensitivity analysis of correlated parameters and nonlinear models. We augment numerical uncertainty propagation with Monte Carlo simulations (i) to include propagation of uncertainty from uncertain variables in parameterized inventory datasets; (ii) to account for correlations between process inputs and outputs and in particular incorporate the carbon balance of combustion activities; (iii) to employ published time-series data instead of static values for electricity generation market mixes in Europe; (iv) to ensure that inputs which are supposed to reach a fixed total (e.g., the percentage contributions of power sources to an electricity mix) actually do so consistently by using the Dirichlet distribution. We then iterate on existing global sensitivity analysis protocols for high-dimensional systems to improve their computational performance. To correctly calculate sensitivity rankings for correlated inputs, we use SHapley Additive exPlanations as feature importance metrics with gradient boosted trees. Our results for a case study of climate change impacts of an average Swiss household confirm that neglecting correlations limits the validity of uncertainty and sensitivity analysis. Our methodology and correlated sampling modules are given as open source code.
期刊介绍:
The Journal of Industrial Ecology addresses a series of related topics:
material and energy flows studies (''industrial metabolism'')
technological change
dematerialization and decarbonization
life cycle planning, design and assessment
design for the environment
extended producer responsibility (''product stewardship'')
eco-industrial parks (''industrial symbiosis'')
product-oriented environmental policy
eco-efficiency
Journal of Industrial Ecology is open to and encourages submissions that are interdisciplinary in approach. In addition to more formal academic papers, the journal seeks to provide a forum for continuing exchange of information and opinions through contributions from scholars, environmental managers, policymakers, advocates and others involved in environmental science, management and policy.