Mirhan Ozdemir, Ugur Simsek, Cemal Efe Gayir, Kadir Gunaydin, Orhan Gulcan
{"title":"基于均质化的增材制造拓扑优化与功能梯度表面网格生成的集成MATLAB代码","authors":"Mirhan Ozdemir, Ugur Simsek, Cemal Efe Gayir, Kadir Gunaydin, Orhan Gulcan","doi":"10.1002/adem.202402567","DOIUrl":null,"url":null,"abstract":"<p>Triply periodic minimal surfaces (TPMS) lattices are gaining popularity for enhancing structural efficiency in many engineering applications. Functionally graded TPMS structures provide more customized mechanical properties and improved functionality compared to typical homogenous designs by deliberately altering material properties throughout the lattice. This study presents a novel framework by integrating a homogenization-based topology optimization method with functionally graded lattice creation, utilizing a streamlined and versatile MATLAB code. The methodology encompasses several essential phases, including preprocessing, finite element analysis, sensitivity analysis, density filtering, optimization, element density visualization, and lattice reconstruction. These steps facilitate the development of highly efficient lattice structures with varied attributes, rendering them optimal for additive manufacturing and full-scale analysis. To ensure the accuracy of the established methodology, three optimization case studies with different boundary conditions are defined, and the mechanical reactions of the optimized lattice structures in filled with different TPMS structures are extensively validated by comparing them to both full-scale finite element models and experiments. The comparative results demonstrate that the mechanical responses obtained from topological analysis closely correspond to those acquired from full-scale models and experiments.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 15","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202402567","citationCount":"0","resultStr":"{\"title\":\"An Integrated MATLAB Code for Homogenization-Based Topology Optimization and Generating Functionally Graded Surface Lattices for Additive Manufacturing\",\"authors\":\"Mirhan Ozdemir, Ugur Simsek, Cemal Efe Gayir, Kadir Gunaydin, Orhan Gulcan\",\"doi\":\"10.1002/adem.202402567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Triply periodic minimal surfaces (TPMS) lattices are gaining popularity for enhancing structural efficiency in many engineering applications. Functionally graded TPMS structures provide more customized mechanical properties and improved functionality compared to typical homogenous designs by deliberately altering material properties throughout the lattice. This study presents a novel framework by integrating a homogenization-based topology optimization method with functionally graded lattice creation, utilizing a streamlined and versatile MATLAB code. The methodology encompasses several essential phases, including preprocessing, finite element analysis, sensitivity analysis, density filtering, optimization, element density visualization, and lattice reconstruction. These steps facilitate the development of highly efficient lattice structures with varied attributes, rendering them optimal for additive manufacturing and full-scale analysis. To ensure the accuracy of the established methodology, three optimization case studies with different boundary conditions are defined, and the mechanical reactions of the optimized lattice structures in filled with different TPMS structures are extensively validated by comparing them to both full-scale finite element models and experiments. The comparative results demonstrate that the mechanical responses obtained from topological analysis closely correspond to those acquired from full-scale models and experiments.</p>\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":\"27 15\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202402567\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adem.202402567\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adem.202402567","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
An Integrated MATLAB Code for Homogenization-Based Topology Optimization and Generating Functionally Graded Surface Lattices for Additive Manufacturing
Triply periodic minimal surfaces (TPMS) lattices are gaining popularity for enhancing structural efficiency in many engineering applications. Functionally graded TPMS structures provide more customized mechanical properties and improved functionality compared to typical homogenous designs by deliberately altering material properties throughout the lattice. This study presents a novel framework by integrating a homogenization-based topology optimization method with functionally graded lattice creation, utilizing a streamlined and versatile MATLAB code. The methodology encompasses several essential phases, including preprocessing, finite element analysis, sensitivity analysis, density filtering, optimization, element density visualization, and lattice reconstruction. These steps facilitate the development of highly efficient lattice structures with varied attributes, rendering them optimal for additive manufacturing and full-scale analysis. To ensure the accuracy of the established methodology, three optimization case studies with different boundary conditions are defined, and the mechanical reactions of the optimized lattice structures in filled with different TPMS structures are extensively validated by comparing them to both full-scale finite element models and experiments. The comparative results demonstrate that the mechanical responses obtained from topological analysis closely correspond to those acquired from full-scale models and experiments.
期刊介绍:
Advanced Engineering Materials is the membership journal of three leading European Materials Societies
- German Materials Society/DGM,
- French Materials Society/SF2M,
- Swiss Materials Federation/SVMT.