Marco M. Reijne , Frank H. van der Meulen , Frans C.T. van der Helm , Arend L. Schwab
{"title":"基于自行车摔倒实验的车把最大允许扰动模型,预测了自行车恢复平衡的能力","authors":"Marco M. Reijne , Frank H. van der Meulen , Frans C.T. van der Helm , Arend L. Schwab","doi":"10.1016/j.aap.2025.108159","DOIUrl":null,"url":null,"abstract":"<div><div>Falls are a significant cause of injury among cyclists, highlighting the need for effective fall prevention interventions. However, ex-ante evaluation of such interventions remains challenging for engineers designing safer infrastructure and bicycles, as well as for safety professionals developing training programs. This study proposes the Maximum Allowable Handlebar Disturbance (MAHD) — the largest external handlebar disturbance a cyclist can recover from — as a performance indicator for evaluating fall prevention interventions. While bicycle dynamics and cyclist control models have the potential to determine this indicator and simulate interventions, their application is currently limited by a lack of validation in predicting the MAHD and the narrow range of interventions that can be incorporated into existing cyclist control models. To address these limitations, we conducted controlled experiments with 24 participants of varying ages and skill levels, exposing them to impulse-like handlebar disturbances that resulted in both recoveries and falls. This dataset, which includes recorded cyclist falls, supports future validation of bicycle dynamics and control models in predicting the MAHD. In addition, using Bayesian Model Averaging, we identified key cyclist factors influencing the MAHD, with forward speed and cyclist balancing skill being critical predictors. Incorporating these predictors into cyclist control models can substantially improve their practical application. These insights were then used to develop a Bayesian multilevel logistic regression model to predict the MAHD for different types of cyclists. Our findings improve the potential for bicycle dynamics and control models to proactively evaluate cyclist fall prevention methods, contributing to safer cycling environments.</div></div>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"221 ","pages":"Article 108159"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model based on cyclist fall experiments which predicts the maximum allowable handlebar disturbance from which a cyclist can recover balance\",\"authors\":\"Marco M. Reijne , Frank H. van der Meulen , Frans C.T. van der Helm , Arend L. Schwab\",\"doi\":\"10.1016/j.aap.2025.108159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Falls are a significant cause of injury among cyclists, highlighting the need for effective fall prevention interventions. However, ex-ante evaluation of such interventions remains challenging for engineers designing safer infrastructure and bicycles, as well as for safety professionals developing training programs. This study proposes the Maximum Allowable Handlebar Disturbance (MAHD) — the largest external handlebar disturbance a cyclist can recover from — as a performance indicator for evaluating fall prevention interventions. While bicycle dynamics and cyclist control models have the potential to determine this indicator and simulate interventions, their application is currently limited by a lack of validation in predicting the MAHD and the narrow range of interventions that can be incorporated into existing cyclist control models. To address these limitations, we conducted controlled experiments with 24 participants of varying ages and skill levels, exposing them to impulse-like handlebar disturbances that resulted in both recoveries and falls. This dataset, which includes recorded cyclist falls, supports future validation of bicycle dynamics and control models in predicting the MAHD. In addition, using Bayesian Model Averaging, we identified key cyclist factors influencing the MAHD, with forward speed and cyclist balancing skill being critical predictors. Incorporating these predictors into cyclist control models can substantially improve their practical application. These insights were then used to develop a Bayesian multilevel logistic regression model to predict the MAHD for different types of cyclists. Our findings improve the potential for bicycle dynamics and control models to proactively evaluate cyclist fall prevention methods, contributing to safer cycling environments.</div></div>\",\"PeriodicalId\":6926,\"journal\":{\"name\":\"Accident; analysis and prevention\",\"volume\":\"221 \",\"pages\":\"Article 108159\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accident; analysis and prevention\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001457525002453\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ERGONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001457525002453","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
A model based on cyclist fall experiments which predicts the maximum allowable handlebar disturbance from which a cyclist can recover balance
Falls are a significant cause of injury among cyclists, highlighting the need for effective fall prevention interventions. However, ex-ante evaluation of such interventions remains challenging for engineers designing safer infrastructure and bicycles, as well as for safety professionals developing training programs. This study proposes the Maximum Allowable Handlebar Disturbance (MAHD) — the largest external handlebar disturbance a cyclist can recover from — as a performance indicator for evaluating fall prevention interventions. While bicycle dynamics and cyclist control models have the potential to determine this indicator and simulate interventions, their application is currently limited by a lack of validation in predicting the MAHD and the narrow range of interventions that can be incorporated into existing cyclist control models. To address these limitations, we conducted controlled experiments with 24 participants of varying ages and skill levels, exposing them to impulse-like handlebar disturbances that resulted in both recoveries and falls. This dataset, which includes recorded cyclist falls, supports future validation of bicycle dynamics and control models in predicting the MAHD. In addition, using Bayesian Model Averaging, we identified key cyclist factors influencing the MAHD, with forward speed and cyclist balancing skill being critical predictors. Incorporating these predictors into cyclist control models can substantially improve their practical application. These insights were then used to develop a Bayesian multilevel logistic regression model to predict the MAHD for different types of cyclists. Our findings improve the potential for bicycle dynamics and control models to proactively evaluate cyclist fall prevention methods, contributing to safer cycling environments.
期刊介绍:
Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.