Meysam Miralaei , Ali Mohammadian , Behruz Tayfeh-Rezaie
{"title":"Hamming图上的自举渗透","authors":"Meysam Miralaei , Ali Mohammadian , Behruz Tayfeh-Rezaie","doi":"10.1016/j.disc.2025.114713","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>r</em>-edge bootstrap percolation on a graph is an activation process of the edges. The process starts with some initially activated edges and then, in each round, any inactive edge whose one of endpoints is incident to at least <em>r</em> active edges becomes activated. A set of initially activated edges leading to the activation of all edges is said to be a percolating set. Denote the minimum size of a percolating set in the <em>r</em>-edge bootstrap percolation process on a graph <em>G</em> by <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span>. The importance of the <em>r</em>-edge bootstrap percolation relies on the fact that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> provides bounds on <span><math><mi>m</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span>, that is, the minimum size of a percolating set in the <em>r</em>-neighbor bootstrap percolation process on <em>G</em>. In this paper, we explicitly determine <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>,</mo><mi>r</mi><mo>)</mo></math></span>, where <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> is the Cartesian product of <em>d</em> copies of the complete graph on <em>n</em> vertices which is referred as Hamming graph. Using this, we show that <span><math><mi>m</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>,</mo><mi>r</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow><mrow><mi>r</mi><mo>!</mo></mrow></mfrac></math></span> when <span><math><mi>n</mi><mo>,</mo><mi>r</mi></math></span> are fixed and <em>d</em> goes to infinity which extends a known result on hypercubes.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114713"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bootstrap percolation on the Hamming graphs\",\"authors\":\"Meysam Miralaei , Ali Mohammadian , Behruz Tayfeh-Rezaie\",\"doi\":\"10.1016/j.disc.2025.114713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The <em>r</em>-edge bootstrap percolation on a graph is an activation process of the edges. The process starts with some initially activated edges and then, in each round, any inactive edge whose one of endpoints is incident to at least <em>r</em> active edges becomes activated. A set of initially activated edges leading to the activation of all edges is said to be a percolating set. Denote the minimum size of a percolating set in the <em>r</em>-edge bootstrap percolation process on a graph <em>G</em> by <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span>. The importance of the <em>r</em>-edge bootstrap percolation relies on the fact that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> provides bounds on <span><math><mi>m</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span>, that is, the minimum size of a percolating set in the <em>r</em>-neighbor bootstrap percolation process on <em>G</em>. In this paper, we explicitly determine <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>,</mo><mi>r</mi><mo>)</mo></math></span>, where <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> is the Cartesian product of <em>d</em> copies of the complete graph on <em>n</em> vertices which is referred as Hamming graph. Using this, we show that <span><math><mi>m</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>,</mo><mi>r</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow><mrow><mi>r</mi><mo>!</mo></mrow></mfrac></math></span> when <span><math><mi>n</mi><mo>,</mo><mi>r</mi></math></span> are fixed and <em>d</em> goes to infinity which extends a known result on hypercubes.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 2\",\"pages\":\"Article 114713\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25003218\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25003218","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The r-edge bootstrap percolation on a graph is an activation process of the edges. The process starts with some initially activated edges and then, in each round, any inactive edge whose one of endpoints is incident to at least r active edges becomes activated. A set of initially activated edges leading to the activation of all edges is said to be a percolating set. Denote the minimum size of a percolating set in the r-edge bootstrap percolation process on a graph G by . The importance of the r-edge bootstrap percolation relies on the fact that provides bounds on , that is, the minimum size of a percolating set in the r-neighbor bootstrap percolation process on G. In this paper, we explicitly determine , where is the Cartesian product of d copies of the complete graph on n vertices which is referred as Hamming graph. Using this, we show that when are fixed and d goes to infinity which extends a known result on hypercubes.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.