{"title":"在布尔超立方体上查找Tarski不动点的随机查询复杂度","authors":"Simina Brânzei, Reed Phillips, Nicholas Recker","doi":"10.1016/j.disc.2025.114698","DOIUrl":null,"url":null,"abstract":"<div><div>The Knaster-Tarski theorem, also known as Tarski's theorem, guarantees that every monotone function defined on a complete lattice has a fixed point. We analyze the query complexity of finding such a fixed point on the <em>k</em>-dimensional grid of side length <em>n</em> under the ≤ relation. Specifically, there is an unknown monotone function <span><math><mi>f</mi><mo>:</mo><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>k</mi></mrow></msup><mo>→</mo><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>k</mi></mrow></msup></math></span> and an algorithm must query a vertex <em>v</em> to learn <span><math><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span>.</div><div>A key special case of interest is the Boolean hypercube <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>k</mi></mrow></msup></math></span>, which is isomorphic to the power set lattice—the original setting of the Knaster-Tarski theorem. We prove a lower bound that characterizes the randomized and deterministic query complexity of the Tarski search problem on the Boolean hypercube as <span><math><mi>Θ</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span>. More generally, we give a randomized lower bound of <span><math><mi>Ω</mi><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mfrac><mrow><mi>k</mi><mo>⋅</mo><mi>log</mi><mo></mo><mi>n</mi></mrow><mrow><mi>log</mi><mo></mo><mi>k</mi></mrow></mfrac><mo>)</mo></mrow></math></span> for the <em>k</em>-dimensional grid of side length <em>n</em>, which is asymptotically tight in high dimensions when <em>k</em> is large relative to <em>n</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114698"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The randomized query complexity of finding a Tarski fixed point on the Boolean hypercube\",\"authors\":\"Simina Brânzei, Reed Phillips, Nicholas Recker\",\"doi\":\"10.1016/j.disc.2025.114698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Knaster-Tarski theorem, also known as Tarski's theorem, guarantees that every monotone function defined on a complete lattice has a fixed point. We analyze the query complexity of finding such a fixed point on the <em>k</em>-dimensional grid of side length <em>n</em> under the ≤ relation. Specifically, there is an unknown monotone function <span><math><mi>f</mi><mo>:</mo><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>k</mi></mrow></msup><mo>→</mo><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>k</mi></mrow></msup></math></span> and an algorithm must query a vertex <em>v</em> to learn <span><math><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span>.</div><div>A key special case of interest is the Boolean hypercube <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>k</mi></mrow></msup></math></span>, which is isomorphic to the power set lattice—the original setting of the Knaster-Tarski theorem. We prove a lower bound that characterizes the randomized and deterministic query complexity of the Tarski search problem on the Boolean hypercube as <span><math><mi>Θ</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span>. More generally, we give a randomized lower bound of <span><math><mi>Ω</mi><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mfrac><mrow><mi>k</mi><mo>⋅</mo><mi>log</mi><mo></mo><mi>n</mi></mrow><mrow><mi>log</mi><mo></mo><mi>k</mi></mrow></mfrac><mo>)</mo></mrow></math></span> for the <em>k</em>-dimensional grid of side length <em>n</em>, which is asymptotically tight in high dimensions when <em>k</em> is large relative to <em>n</em>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 12\",\"pages\":\"Article 114698\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25003061\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25003061","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The randomized query complexity of finding a Tarski fixed point on the Boolean hypercube
The Knaster-Tarski theorem, also known as Tarski's theorem, guarantees that every monotone function defined on a complete lattice has a fixed point. We analyze the query complexity of finding such a fixed point on the k-dimensional grid of side length n under the ≤ relation. Specifically, there is an unknown monotone function and an algorithm must query a vertex v to learn .
A key special case of interest is the Boolean hypercube , which is isomorphic to the power set lattice—the original setting of the Knaster-Tarski theorem. We prove a lower bound that characterizes the randomized and deterministic query complexity of the Tarski search problem on the Boolean hypercube as . More generally, we give a randomized lower bound of for the k-dimensional grid of side length n, which is asymptotically tight in high dimensions when k is large relative to n.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.