在布尔超立方体上查找Tarski不动点的随机查询复杂度

IF 0.7 3区 数学 Q2 MATHEMATICS
Simina Brânzei, Reed Phillips, Nicholas Recker
{"title":"在布尔超立方体上查找Tarski不动点的随机查询复杂度","authors":"Simina Brânzei,&nbsp;Reed Phillips,&nbsp;Nicholas Recker","doi":"10.1016/j.disc.2025.114698","DOIUrl":null,"url":null,"abstract":"<div><div>The Knaster-Tarski theorem, also known as Tarski's theorem, guarantees that every monotone function defined on a complete lattice has a fixed point. We analyze the query complexity of finding such a fixed point on the <em>k</em>-dimensional grid of side length <em>n</em> under the ≤ relation. Specifically, there is an unknown monotone function <span><math><mi>f</mi><mo>:</mo><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>k</mi></mrow></msup><mo>→</mo><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>k</mi></mrow></msup></math></span> and an algorithm must query a vertex <em>v</em> to learn <span><math><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span>.</div><div>A key special case of interest is the Boolean hypercube <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>k</mi></mrow></msup></math></span>, which is isomorphic to the power set lattice—the original setting of the Knaster-Tarski theorem. We prove a lower bound that characterizes the randomized and deterministic query complexity of the Tarski search problem on the Boolean hypercube as <span><math><mi>Θ</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span>. More generally, we give a randomized lower bound of <span><math><mi>Ω</mi><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mfrac><mrow><mi>k</mi><mo>⋅</mo><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow><mrow><mi>log</mi><mo>⁡</mo><mi>k</mi></mrow></mfrac><mo>)</mo></mrow></math></span> for the <em>k</em>-dimensional grid of side length <em>n</em>, which is asymptotically tight in high dimensions when <em>k</em> is large relative to <em>n</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114698"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The randomized query complexity of finding a Tarski fixed point on the Boolean hypercube\",\"authors\":\"Simina Brânzei,&nbsp;Reed Phillips,&nbsp;Nicholas Recker\",\"doi\":\"10.1016/j.disc.2025.114698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Knaster-Tarski theorem, also known as Tarski's theorem, guarantees that every monotone function defined on a complete lattice has a fixed point. We analyze the query complexity of finding such a fixed point on the <em>k</em>-dimensional grid of side length <em>n</em> under the ≤ relation. Specifically, there is an unknown monotone function <span><math><mi>f</mi><mo>:</mo><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>k</mi></mrow></msup><mo>→</mo><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>k</mi></mrow></msup></math></span> and an algorithm must query a vertex <em>v</em> to learn <span><math><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span>.</div><div>A key special case of interest is the Boolean hypercube <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>k</mi></mrow></msup></math></span>, which is isomorphic to the power set lattice—the original setting of the Knaster-Tarski theorem. We prove a lower bound that characterizes the randomized and deterministic query complexity of the Tarski search problem on the Boolean hypercube as <span><math><mi>Θ</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span>. More generally, we give a randomized lower bound of <span><math><mi>Ω</mi><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mfrac><mrow><mi>k</mi><mo>⋅</mo><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow><mrow><mi>log</mi><mo>⁡</mo><mi>k</mi></mrow></mfrac><mo>)</mo></mrow></math></span> for the <em>k</em>-dimensional grid of side length <em>n</em>, which is asymptotically tight in high dimensions when <em>k</em> is large relative to <em>n</em>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 12\",\"pages\":\"Article 114698\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25003061\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25003061","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Knaster-Tarski定理,又称Tarski定理,保证了在完全格上定义的每一个单调函数都有一个不动点。我们分析了在≤关系下,在边长为n的k维网格上寻找这样一个不动点的查询复杂度。具体来说,存在一个未知单调函数f:{0,1,…,n−1}k→{0,1,…,n−1}k,并且算法必须查询一个顶点v才能学习f(v)。一个重要的特殊情况是布尔超立方体{0,1}k,它与幂集格同构,幂集格是Knaster-Tarski定理的原始集。我们证明了布尔超立方体上的Tarski搜索问题的随机和确定性查询复杂度表征为Θ(k)的下界。更一般地说,对于边长为n的k维网格,我们给出了一个随机下界Ω(k+k⋅log (nlog)),当k相对于n较大时,该网格在高维上是渐近紧密的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The randomized query complexity of finding a Tarski fixed point on the Boolean hypercube
The Knaster-Tarski theorem, also known as Tarski's theorem, guarantees that every monotone function defined on a complete lattice has a fixed point. We analyze the query complexity of finding such a fixed point on the k-dimensional grid of side length n under the ≤ relation. Specifically, there is an unknown monotone function f:{0,1,,n1}k{0,1,,n1}k and an algorithm must query a vertex v to learn f(v).
A key special case of interest is the Boolean hypercube {0,1}k, which is isomorphic to the power set lattice—the original setting of the Knaster-Tarski theorem. We prove a lower bound that characterizes the randomized and deterministic query complexity of the Tarski search problem on the Boolean hypercube as Θ(k). More generally, we give a randomized lower bound of Ω(k+klognlogk) for the k-dimensional grid of side length n, which is asymptotically tight in high dimensions when k is large relative to n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信