生物工程银纳米颗粒抑制冲突介导的运动和诱导argi驱动的代谢重组大肠杆菌

IF 3.8 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Moumita Sil , Anamitra Goswami , Igor Polikarpov , Arunava Goswami
{"title":"生物工程银纳米颗粒抑制冲突介导的运动和诱导argi驱动的代谢重组大肠杆菌","authors":"Moumita Sil ,&nbsp;Anamitra Goswami ,&nbsp;Igor Polikarpov ,&nbsp;Arunava Goswami","doi":"10.1016/j.bcab.2025.103712","DOIUrl":null,"url":null,"abstract":"<div><div>The rise of antimicrobial resistance necessitates novel treatment approaches, with bio-synthesized nanoparticles offering promising alternatives. This study explores silver nanoparticles (bio-AgNPs) synthesized using Terminalia chebula extract, characterized via spectroscopy and microscopy techniques. Bio-AgNPs exhibited a surface plasmon resonance peak at 466 nm, an average hydrodynamic diameter of 150.3 nm, and a zeta potential of −41.55 mV, ensuring colloidal stability. Antibacterial efficacy was evaluated against <em>Escherichia coli</em> K12, with a minimum inhibitory concentration of 78.125 ppm. Transcriptomic profiling revealed a significant downregulation of flagellar biosynthesis and assembly genes—including fliC (encoding flagellin, the main structural protein of bacterial flagella), flgB, flgC, flgD, flgE, fliH, flgG, fliI, flgH, fliJ, and fliK—impairing bacterial chemotaxis and reducing motility. Concurrently, suppression of the citT gene disrupted citrate import via the citrate-succinate antiporter, impairing TCA cycle flux and limiting carbon metabolism. Conversely, genes involved in L-arginine biosynthesis and transport—including argI (encoding ornithine carbamoyltransferase, a key enzyme in the arginine biosynthesis pathway), argC, carA, argD, argA, argG, artP, artQ, artJ, and artI—were upregulated, indicating a metabolic shift toward arginine catabolism via the arginine deiminase pathway under oxidative stress. Arginine is known to inhibit Na<sup>+</sup>-Na-dependent flagellar motors by competitively interfering with sodium binding, further exacerbating motility impairment. The dual antimicrobial action—disrupting flagellar function and inducing metabolic stress—suggests a potent biochemical mechanism to counteract bacterial adaptation and resistance.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"68 ","pages":"Article 103712"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-engineered silver nanoparticles suppress flic-mediated motility and induce argI-driven metabolic rewiring in Escherichia coli\",\"authors\":\"Moumita Sil ,&nbsp;Anamitra Goswami ,&nbsp;Igor Polikarpov ,&nbsp;Arunava Goswami\",\"doi\":\"10.1016/j.bcab.2025.103712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rise of antimicrobial resistance necessitates novel treatment approaches, with bio-synthesized nanoparticles offering promising alternatives. This study explores silver nanoparticles (bio-AgNPs) synthesized using Terminalia chebula extract, characterized via spectroscopy and microscopy techniques. Bio-AgNPs exhibited a surface plasmon resonance peak at 466 nm, an average hydrodynamic diameter of 150.3 nm, and a zeta potential of −41.55 mV, ensuring colloidal stability. Antibacterial efficacy was evaluated against <em>Escherichia coli</em> K12, with a minimum inhibitory concentration of 78.125 ppm. Transcriptomic profiling revealed a significant downregulation of flagellar biosynthesis and assembly genes—including fliC (encoding flagellin, the main structural protein of bacterial flagella), flgB, flgC, flgD, flgE, fliH, flgG, fliI, flgH, fliJ, and fliK—impairing bacterial chemotaxis and reducing motility. Concurrently, suppression of the citT gene disrupted citrate import via the citrate-succinate antiporter, impairing TCA cycle flux and limiting carbon metabolism. Conversely, genes involved in L-arginine biosynthesis and transport—including argI (encoding ornithine carbamoyltransferase, a key enzyme in the arginine biosynthesis pathway), argC, carA, argD, argA, argG, artP, artQ, artJ, and artI—were upregulated, indicating a metabolic shift toward arginine catabolism via the arginine deiminase pathway under oxidative stress. Arginine is known to inhibit Na<sup>+</sup>-Na-dependent flagellar motors by competitively interfering with sodium binding, further exacerbating motility impairment. The dual antimicrobial action—disrupting flagellar function and inducing metabolic stress—suggests a potent biochemical mechanism to counteract bacterial adaptation and resistance.</div></div>\",\"PeriodicalId\":8774,\"journal\":{\"name\":\"Biocatalysis and agricultural biotechnology\",\"volume\":\"68 \",\"pages\":\"Article 103712\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocatalysis and agricultural biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878818125002257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818125002257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

抗菌素耐药性的增加需要新的治疗方法,生物合成纳米颗粒提供了有希望的替代方法。本研究探索了用天牛提取物合成的银纳米粒子(生物agnps),并通过光谱和显微镜技术对其进行了表征。生物agnps的表面等离子体共振峰在466 nm处,平均水动力直径为150.3 nm, zeta电位为- 41.55 mV,保证了胶体的稳定性。对大肠杆菌K12进行抑菌效果评价,最低抑菌浓度为78.125 ppm。转录组学分析显示,鞭毛生物合成和组装基因(包括fliC(编码鞭毛蛋白,细菌鞭毛的主要结构蛋白)、flgB、flgC、flgD、flgE、flh、flgG、fliI、flgH、fliJ和flik)显著下调,从而损害细菌趋化性和降低运动能力。同时,citT基因的抑制破坏了柠檬酸盐通过柠檬酸-琥珀酸反转运蛋白的进口,损害了TCA循环通量,限制了碳代谢。相反,参与l -精氨酸生物合成和运输的基因——包括argI(编码鸟氨酸氨基转移酶,精氨酸生物合成途径中的关键酶)、argC、carA、argD、argA、argG、artP、artQ、artJ和artii——被上调,表明氧化应激下通过精氨酸脱亚胺酶途径向精氨酸分解代谢转变。精氨酸通过竞争性地干扰钠结合抑制Na+-Na依赖性鞭毛运动,进一步加剧运动障碍。破坏鞭毛功能和诱导代谢应激的双重抗菌作用提示了一种有效的生化机制来对抗细菌的适应和耐药性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bio-engineered silver nanoparticles suppress flic-mediated motility and induce argI-driven metabolic rewiring in Escherichia coli

Bio-engineered silver nanoparticles suppress flic-mediated motility and induce argI-driven metabolic rewiring in Escherichia coli
The rise of antimicrobial resistance necessitates novel treatment approaches, with bio-synthesized nanoparticles offering promising alternatives. This study explores silver nanoparticles (bio-AgNPs) synthesized using Terminalia chebula extract, characterized via spectroscopy and microscopy techniques. Bio-AgNPs exhibited a surface plasmon resonance peak at 466 nm, an average hydrodynamic diameter of 150.3 nm, and a zeta potential of −41.55 mV, ensuring colloidal stability. Antibacterial efficacy was evaluated against Escherichia coli K12, with a minimum inhibitory concentration of 78.125 ppm. Transcriptomic profiling revealed a significant downregulation of flagellar biosynthesis and assembly genes—including fliC (encoding flagellin, the main structural protein of bacterial flagella), flgB, flgC, flgD, flgE, fliH, flgG, fliI, flgH, fliJ, and fliK—impairing bacterial chemotaxis and reducing motility. Concurrently, suppression of the citT gene disrupted citrate import via the citrate-succinate antiporter, impairing TCA cycle flux and limiting carbon metabolism. Conversely, genes involved in L-arginine biosynthesis and transport—including argI (encoding ornithine carbamoyltransferase, a key enzyme in the arginine biosynthesis pathway), argC, carA, argD, argA, argG, artP, artQ, artJ, and artI—were upregulated, indicating a metabolic shift toward arginine catabolism via the arginine deiminase pathway under oxidative stress. Arginine is known to inhibit Na+-Na-dependent flagellar motors by competitively interfering with sodium binding, further exacerbating motility impairment. The dual antimicrobial action—disrupting flagellar function and inducing metabolic stress—suggests a potent biochemical mechanism to counteract bacterial adaptation and resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biocatalysis and agricultural biotechnology
Biocatalysis and agricultural biotechnology Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
7.70
自引率
2.50%
发文量
308
审稿时长
48 days
期刊介绍: Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信