{"title":"Sylvester算子的逆迭代","authors":"Liangshao Hou , Jieyong Zhou , Eric King-Wah Chu","doi":"10.1016/j.cam.2025.116950","DOIUrl":null,"url":null,"abstract":"<div><div>We generalize the inverse iteration for matrices to the (generalized) Sylvester operator <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>≡</mo><mi>A</mi><mi>X</mi><msup><mrow><mi>B</mi></mrow><mrow><mo>⊤</mo></mrow></msup><mo>−</mo><mi>C</mi><mi>X</mi><msup><mrow><mi>D</mi></mrow><mrow><mo>⊤</mo></mrow></msup></mrow></math></span>, computing the null space or the homogeneous solution to <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span>, or the eigen-spaces for the intersecting subspectrum <span><math><mrow><mi>Λ</mi><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow><mo>∩</mo><mi>Λ</mi><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>B</mi><mo>)</mo></mrow></mrow></math></span>. Cases with two small matrix pencils in <span><math><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></math></span> and <span><math><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>B</mi><mo>)</mo></mrow></math></span>, a large and a small pencils, and two large pencils, as well as the special cases for the Sylvester and Lyapunov equations, and the linear equation with tensor structures, are considered. When the solution process for the corresponding Sylvester equation is robust and efficient, the generalized inverse iteration converges in one or two iterations, especially for cases of small dimensions or with semi-simple intersecting eigenvalues. For large examples, especially with derogatory intersecting eigenvalues, the approach performs less well. Illustrative numerical experiments are presented.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"474 ","pages":"Article 116950"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse iteration for Sylvester operators\",\"authors\":\"Liangshao Hou , Jieyong Zhou , Eric King-Wah Chu\",\"doi\":\"10.1016/j.cam.2025.116950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We generalize the inverse iteration for matrices to the (generalized) Sylvester operator <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>≡</mo><mi>A</mi><mi>X</mi><msup><mrow><mi>B</mi></mrow><mrow><mo>⊤</mo></mrow></msup><mo>−</mo><mi>C</mi><mi>X</mi><msup><mrow><mi>D</mi></mrow><mrow><mo>⊤</mo></mrow></msup></mrow></math></span>, computing the null space or the homogeneous solution to <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span>, or the eigen-spaces for the intersecting subspectrum <span><math><mrow><mi>Λ</mi><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow><mo>∩</mo><mi>Λ</mi><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>B</mi><mo>)</mo></mrow></mrow></math></span>. Cases with two small matrix pencils in <span><math><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></math></span> and <span><math><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>B</mi><mo>)</mo></mrow></math></span>, a large and a small pencils, and two large pencils, as well as the special cases for the Sylvester and Lyapunov equations, and the linear equation with tensor structures, are considered. When the solution process for the corresponding Sylvester equation is robust and efficient, the generalized inverse iteration converges in one or two iterations, especially for cases of small dimensions or with semi-simple intersecting eigenvalues. For large examples, especially with derogatory intersecting eigenvalues, the approach performs less well. Illustrative numerical experiments are presented.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"474 \",\"pages\":\"Article 116950\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725004649\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725004649","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
We generalize the inverse iteration for matrices to the (generalized) Sylvester operator , computing the null space or the homogeneous solution to , or the eigen-spaces for the intersecting subspectrum . Cases with two small matrix pencils in and , a large and a small pencils, and two large pencils, as well as the special cases for the Sylvester and Lyapunov equations, and the linear equation with tensor structures, are considered. When the solution process for the corresponding Sylvester equation is robust and efficient, the generalized inverse iteration converges in one or two iterations, especially for cases of small dimensions or with semi-simple intersecting eigenvalues. For large examples, especially with derogatory intersecting eigenvalues, the approach performs less well. Illustrative numerical experiments are presented.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.