Xiaotong Zhang , Wenying Zhang , Tingting Liu , Fengjing Song , Chengyu Chen , Chao Wang , Weiyi Zhang , Xu Han , Xianliang Wang
{"title":"2010 - 2022年中国家庭粉尘中多溴二苯醚的含量、分布、来源及儿童健康风险","authors":"Xiaotong Zhang , Wenying Zhang , Tingting Liu , Fengjing Song , Chengyu Chen , Chao Wang , Weiyi Zhang , Xu Han , Xianliang Wang","doi":"10.1016/j.indenv.2025.100114","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Polybrominated biphenyl ethers (PBDEs) are one of the most common flame retardants in household products. Given their broad-spectrum toxicity, monitoring PBDE levels in indoor environments and assessing their potential health risks are critical for residential health risk management.</div></div><div><h3>Methods</h3><div>Based on published literature data from 2010 to 2022, the concrete raw data regarding the concentration of PBDEs in actual dust samples from true household living conditions in China were collected exhaustively from 26 peer-reviewed papers after screening. Congeners with detection rates exceeding 80 % (BDE-28, −47, −99, −100, −153, −154, −183, −209) were selected for further analysis. Household dust PBDE levels were quantified using the weighted average concentration. Seasonal and regional variations were evaluated using the Mann-Whitney U and Kruskal-Wallis H tests, while Spearman correlation analysis and exploratory factor analysis (EFA) were applied for source apportionment. Health risks to children were assessed based on estimated daily intake (EDI) via ingestion and dermal absorption, using hazard indices (HI) and carcinogenic risk (CR) models.</div></div><div><h3>Results</h3><div>The concentrations of PBDEs in household dust (HD-PBDEs)<span><span><sup>2</sup></span></span> in China ranged from 4.03 ng/g to 37333.58 ng/g, with a weighted average concentration of 3625.43 ng/g. The weighted average concentration was maximum in Zhejiang (27268.66 ng/g) and lowest in Shaanxi (4.03 ng/g). BDE-209 was the predominant congener of HD-PBDEs, ranging from 73.56 % to 99.78 %, followed by BDE-47 (6.84–62.08 %), BDE-99 (1.80–56.77 %), and BDE-153 (0–43.10 %). The weighted average concentrations of ∑<sub>8</sub>PBDEs were 1419.97 ng/g in 2006–2009, 5886.15 ng/g in 2010–2014, and 1813.51 ng/g in 2015–2020. HD-PBDE concentration was significantly higher in winter than in spring and fall (<em>P</em> < 0.05). Families residing in rural areas, southern regions, or near e-waste-contaminated areas exhibited higher concentrations of HD-PBDEs (<em>P</em> < 0.05). Two principal components were extracted, accounting for 84.56 % of the total variance. The estimated daily intake of HD-PBDEs for children via ingestion (1.93 × 10<sup>1</sup> ng/kg BW/day) was higher than that via dermal absorption (8.93 ×10<sup>−1</sup> ng/kg BW/day). The non-carcinogenic risk of HD-PBDEs (1.01 ×10<sup>−1</sup>) and the carcinogenic risk of BDE-209 (1.30 ×10<sup>−8</sup>) were below the standard criterion.</div></div><div><h3>Conclusions</h3><div>HD-PBDE concentrations in China ranked moderate-to-high globally, with clear regional variations. Both non-carcinogenic and carcinogenic risks of HD-PBDE exposure to Chinese children were acceptable. Future investigations should focus on longitudinal monitoring of PBDE trends in household environments and health impacts on vulnerable subpopulations.</div></div>","PeriodicalId":100665,"journal":{"name":"Indoor Environments","volume":"2 3","pages":"Article 100114"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Levels, distribution, sources and children's health risk of PBDEs in household dust from 2010 to 2022 in China\",\"authors\":\"Xiaotong Zhang , Wenying Zhang , Tingting Liu , Fengjing Song , Chengyu Chen , Chao Wang , Weiyi Zhang , Xu Han , Xianliang Wang\",\"doi\":\"10.1016/j.indenv.2025.100114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Polybrominated biphenyl ethers (PBDEs) are one of the most common flame retardants in household products. Given their broad-spectrum toxicity, monitoring PBDE levels in indoor environments and assessing their potential health risks are critical for residential health risk management.</div></div><div><h3>Methods</h3><div>Based on published literature data from 2010 to 2022, the concrete raw data regarding the concentration of PBDEs in actual dust samples from true household living conditions in China were collected exhaustively from 26 peer-reviewed papers after screening. Congeners with detection rates exceeding 80 % (BDE-28, −47, −99, −100, −153, −154, −183, −209) were selected for further analysis. Household dust PBDE levels were quantified using the weighted average concentration. Seasonal and regional variations were evaluated using the Mann-Whitney U and Kruskal-Wallis H tests, while Spearman correlation analysis and exploratory factor analysis (EFA) were applied for source apportionment. Health risks to children were assessed based on estimated daily intake (EDI) via ingestion and dermal absorption, using hazard indices (HI) and carcinogenic risk (CR) models.</div></div><div><h3>Results</h3><div>The concentrations of PBDEs in household dust (HD-PBDEs)<span><span><sup>2</sup></span></span> in China ranged from 4.03 ng/g to 37333.58 ng/g, with a weighted average concentration of 3625.43 ng/g. The weighted average concentration was maximum in Zhejiang (27268.66 ng/g) and lowest in Shaanxi (4.03 ng/g). BDE-209 was the predominant congener of HD-PBDEs, ranging from 73.56 % to 99.78 %, followed by BDE-47 (6.84–62.08 %), BDE-99 (1.80–56.77 %), and BDE-153 (0–43.10 %). The weighted average concentrations of ∑<sub>8</sub>PBDEs were 1419.97 ng/g in 2006–2009, 5886.15 ng/g in 2010–2014, and 1813.51 ng/g in 2015–2020. HD-PBDE concentration was significantly higher in winter than in spring and fall (<em>P</em> < 0.05). Families residing in rural areas, southern regions, or near e-waste-contaminated areas exhibited higher concentrations of HD-PBDEs (<em>P</em> < 0.05). Two principal components were extracted, accounting for 84.56 % of the total variance. The estimated daily intake of HD-PBDEs for children via ingestion (1.93 × 10<sup>1</sup> ng/kg BW/day) was higher than that via dermal absorption (8.93 ×10<sup>−1</sup> ng/kg BW/day). The non-carcinogenic risk of HD-PBDEs (1.01 ×10<sup>−1</sup>) and the carcinogenic risk of BDE-209 (1.30 ×10<sup>−8</sup>) were below the standard criterion.</div></div><div><h3>Conclusions</h3><div>HD-PBDE concentrations in China ranked moderate-to-high globally, with clear regional variations. Both non-carcinogenic and carcinogenic risks of HD-PBDE exposure to Chinese children were acceptable. Future investigations should focus on longitudinal monitoring of PBDE trends in household environments and health impacts on vulnerable subpopulations.</div></div>\",\"PeriodicalId\":100665,\"journal\":{\"name\":\"Indoor Environments\",\"volume\":\"2 3\",\"pages\":\"Article 100114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950362025000438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor Environments","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950362025000438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Levels, distribution, sources and children's health risk of PBDEs in household dust from 2010 to 2022 in China
Background
Polybrominated biphenyl ethers (PBDEs) are one of the most common flame retardants in household products. Given their broad-spectrum toxicity, monitoring PBDE levels in indoor environments and assessing their potential health risks are critical for residential health risk management.
Methods
Based on published literature data from 2010 to 2022, the concrete raw data regarding the concentration of PBDEs in actual dust samples from true household living conditions in China were collected exhaustively from 26 peer-reviewed papers after screening. Congeners with detection rates exceeding 80 % (BDE-28, −47, −99, −100, −153, −154, −183, −209) were selected for further analysis. Household dust PBDE levels were quantified using the weighted average concentration. Seasonal and regional variations were evaluated using the Mann-Whitney U and Kruskal-Wallis H tests, while Spearman correlation analysis and exploratory factor analysis (EFA) were applied for source apportionment. Health risks to children were assessed based on estimated daily intake (EDI) via ingestion and dermal absorption, using hazard indices (HI) and carcinogenic risk (CR) models.
Results
The concentrations of PBDEs in household dust (HD-PBDEs)2 in China ranged from 4.03 ng/g to 37333.58 ng/g, with a weighted average concentration of 3625.43 ng/g. The weighted average concentration was maximum in Zhejiang (27268.66 ng/g) and lowest in Shaanxi (4.03 ng/g). BDE-209 was the predominant congener of HD-PBDEs, ranging from 73.56 % to 99.78 %, followed by BDE-47 (6.84–62.08 %), BDE-99 (1.80–56.77 %), and BDE-153 (0–43.10 %). The weighted average concentrations of ∑8PBDEs were 1419.97 ng/g in 2006–2009, 5886.15 ng/g in 2010–2014, and 1813.51 ng/g in 2015–2020. HD-PBDE concentration was significantly higher in winter than in spring and fall (P < 0.05). Families residing in rural areas, southern regions, or near e-waste-contaminated areas exhibited higher concentrations of HD-PBDEs (P < 0.05). Two principal components were extracted, accounting for 84.56 % of the total variance. The estimated daily intake of HD-PBDEs for children via ingestion (1.93 × 101 ng/kg BW/day) was higher than that via dermal absorption (8.93 ×10−1 ng/kg BW/day). The non-carcinogenic risk of HD-PBDEs (1.01 ×10−1) and the carcinogenic risk of BDE-209 (1.30 ×10−8) were below the standard criterion.
Conclusions
HD-PBDE concentrations in China ranked moderate-to-high globally, with clear regional variations. Both non-carcinogenic and carcinogenic risks of HD-PBDE exposure to Chinese children were acceptable. Future investigations should focus on longitudinal monitoring of PBDE trends in household environments and health impacts on vulnerable subpopulations.