{"title":"一种新的基于三向自适应的情感分析模型","authors":"Zhihui Zhang, Dun Liu, Rongping Shen","doi":"10.1016/j.ijar.2025.109536","DOIUrl":null,"url":null,"abstract":"<div><div>In the era of social media and diverse communication platforms, understanding human emotion across various modalities has become a crucial challenge. While significant progress has been made in feature extraction and interaction techniques, several unresolved issues persist, particularly concerning the balance between these two aspects. A central question is whether all extracted features are of equal importance, or if some may contain redundant or noisy information that undermines effective modality interaction. To address these challenges, we propose a novel Three-Way Decision-Based Self-Adaptive Filtering Model (TWSAFM). Inspired by the three-way decision (TWD) theory, we introduce a self-adaptive filtering module that categorizes extracted modal features into three distinct domains: acceptable, rejectable, and reconsidering. This classification allows for separate processing of features, enabling the model to prioritize essential information while minimizing the impact of redundant and noisy data. Experimental validation on three benchmark datasets demonstrates that TWSAFM outperforms state-of-the-art methods in sentiment analysis tasks. Furthermore, training studies and parameter sensitivity analysis underscore the effectiveness of TWSAFM in efficiently filtering out irrelevant and noisy features, highlighting its robust contribution to enhancing feature interaction.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"187 ","pages":"Article 109536"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel three-way based self-adaptive filtering model for sentiment analysis\",\"authors\":\"Zhihui Zhang, Dun Liu, Rongping Shen\",\"doi\":\"10.1016/j.ijar.2025.109536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the era of social media and diverse communication platforms, understanding human emotion across various modalities has become a crucial challenge. While significant progress has been made in feature extraction and interaction techniques, several unresolved issues persist, particularly concerning the balance between these two aspects. A central question is whether all extracted features are of equal importance, or if some may contain redundant or noisy information that undermines effective modality interaction. To address these challenges, we propose a novel Three-Way Decision-Based Self-Adaptive Filtering Model (TWSAFM). Inspired by the three-way decision (TWD) theory, we introduce a self-adaptive filtering module that categorizes extracted modal features into three distinct domains: acceptable, rejectable, and reconsidering. This classification allows for separate processing of features, enabling the model to prioritize essential information while minimizing the impact of redundant and noisy data. Experimental validation on three benchmark datasets demonstrates that TWSAFM outperforms state-of-the-art methods in sentiment analysis tasks. Furthermore, training studies and parameter sensitivity analysis underscore the effectiveness of TWSAFM in efficiently filtering out irrelevant and noisy features, highlighting its robust contribution to enhancing feature interaction.</div></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"187 \",\"pages\":\"Article 109536\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X2500177X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X2500177X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A novel three-way based self-adaptive filtering model for sentiment analysis
In the era of social media and diverse communication platforms, understanding human emotion across various modalities has become a crucial challenge. While significant progress has been made in feature extraction and interaction techniques, several unresolved issues persist, particularly concerning the balance between these two aspects. A central question is whether all extracted features are of equal importance, or if some may contain redundant or noisy information that undermines effective modality interaction. To address these challenges, we propose a novel Three-Way Decision-Based Self-Adaptive Filtering Model (TWSAFM). Inspired by the three-way decision (TWD) theory, we introduce a self-adaptive filtering module that categorizes extracted modal features into three distinct domains: acceptable, rejectable, and reconsidering. This classification allows for separate processing of features, enabling the model to prioritize essential information while minimizing the impact of redundant and noisy data. Experimental validation on three benchmark datasets demonstrates that TWSAFM outperforms state-of-the-art methods in sentiment analysis tasks. Furthermore, training studies and parameter sensitivity analysis underscore the effectiveness of TWSAFM in efficiently filtering out irrelevant and noisy features, highlighting its robust contribution to enhancing feature interaction.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.