{"title":"以一种先进的船舶检验方法——总吨位测量三维点云为例","authors":"Byung-Hwa Song , Bon-Yeong Park , Dong-Kun Lee","doi":"10.1016/j.ijnaoe.2025.100677","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the feasibility of gross tonnage (GT) measurement using 3D point cloud technology as a digital alternative to traditional manual methods. While ships over 24 m follow standardized regulations under the 1969 Tonnage Measurement Convention (TMC), those under 24 m are subject to diverse national rules, often based on simplified formulas. In this study, 3D point clouds were acquired using laser scanners for two Korean vessels—a government-owned ship over 24 m and a fishing vessel under 24 m. After post-processing, the enclosed volume was estimated using a convex hull algorithm and compared with GT values calculated under national standards. The point cloud-based method showed minimal variation, with a maximum difference of 0.30 % in volume and 0.23 TON in GT. These results indicate that 3D scanning provides a reliable and accurate alternative for GT measurement and offers potential for broader institutional adoption through standardized digital workflows.</div></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"17 ","pages":"Article 100677"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A case study on the introduction of an advanced ship inspection method: Gross tonnage measurement 3D point clouds\",\"authors\":\"Byung-Hwa Song , Bon-Yeong Park , Dong-Kun Lee\",\"doi\":\"10.1016/j.ijnaoe.2025.100677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines the feasibility of gross tonnage (GT) measurement using 3D point cloud technology as a digital alternative to traditional manual methods. While ships over 24 m follow standardized regulations under the 1969 Tonnage Measurement Convention (TMC), those under 24 m are subject to diverse national rules, often based on simplified formulas. In this study, 3D point clouds were acquired using laser scanners for two Korean vessels—a government-owned ship over 24 m and a fishing vessel under 24 m. After post-processing, the enclosed volume was estimated using a convex hull algorithm and compared with GT values calculated under national standards. The point cloud-based method showed minimal variation, with a maximum difference of 0.30 % in volume and 0.23 TON in GT. These results indicate that 3D scanning provides a reliable and accurate alternative for GT measurement and offers potential for broader institutional adoption through standardized digital workflows.</div></div>\",\"PeriodicalId\":14160,\"journal\":{\"name\":\"International Journal of Naval Architecture and Ocean Engineering\",\"volume\":\"17 \",\"pages\":\"Article 100677\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Naval Architecture and Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2092678225000354\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678225000354","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
A case study on the introduction of an advanced ship inspection method: Gross tonnage measurement 3D point clouds
This study examines the feasibility of gross tonnage (GT) measurement using 3D point cloud technology as a digital alternative to traditional manual methods. While ships over 24 m follow standardized regulations under the 1969 Tonnage Measurement Convention (TMC), those under 24 m are subject to diverse national rules, often based on simplified formulas. In this study, 3D point clouds were acquired using laser scanners for two Korean vessels—a government-owned ship over 24 m and a fishing vessel under 24 m. After post-processing, the enclosed volume was estimated using a convex hull algorithm and compared with GT values calculated under national standards. The point cloud-based method showed minimal variation, with a maximum difference of 0.30 % in volume and 0.23 TON in GT. These results indicate that 3D scanning provides a reliable and accurate alternative for GT measurement and offers potential for broader institutional adoption through standardized digital workflows.
期刊介绍:
International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.