M. Gola , M. Barbi , V. Berardi , A. Buchowicz , N. Buril , L. Cook , S. Cuen-Rochin , G. DeRosa , P. de Perio , K. Dygnarowicz , B. Ferrazzi , A. Fiorentini , C.S. Garde , G. Galiński , K. Graham , R. Gornea , M. Hartz , J. Holeczek , S. Jagtap , M. Kala , M. Ziembicki
{"title":"组装,测试,并安装mPMT光敏器为水切伦科夫测试实验","authors":"M. Gola , M. Barbi , V. Berardi , A. Buchowicz , N. Buril , L. Cook , S. Cuen-Rochin , G. DeRosa , P. de Perio , K. Dygnarowicz , B. Ferrazzi , A. Fiorentini , C.S. Garde , G. Galiński , K. Graham , R. Gornea , M. Hartz , J. Holeczek , S. Jagtap , M. Kala , M. Ziembicki","doi":"10.1016/j.nima.2025.170903","DOIUrl":null,"url":null,"abstract":"<div><div>The multi-Photomultiplier Tube (mPMT) photosensors will be used in the Water Cherenkov Test Experiment (WCTE) to efficiently detect the photons produced in the whole detector. One of the aims behind the development of WCTE is to test the technology and implement it in future water Cherenkov experiments such as the Hyper-Kamiokande experiment and its Intermediate Water Cherenkov Detector. Each mPMT is built using nineteen 3-inch PMTs arranged on a semi-spherical support matrix. In this paper, we describe the design and manufacture of the mechanical components, the procedures for casting an optical gel between PMTs and acrylic cover, and the overall assembly procedure of the mPMTs. Details of the electronics used in the mPMT modules are not included in this paper and will be presented in a separate publication. We also report on the R&D performed on the selection of the optical gel ratio along with transmittance measurements and the reflectance measurements performed on the aluminium reflector. We also present the optical tests performed on the mPMT module using a 405 nm LED and the resulting increase in the effective photosensitive area by surrounding the PMTs with a reflector. A summary of the production and installation of the mPMTs for the WCTE is also presented in this paper.</div></div>","PeriodicalId":19359,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","volume":"1081 ","pages":"Article 170903"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assembly, testing, and installation of mPMT photosensor for the Water Cherenkov Test Experiment\",\"authors\":\"M. Gola , M. Barbi , V. Berardi , A. Buchowicz , N. Buril , L. Cook , S. Cuen-Rochin , G. DeRosa , P. de Perio , K. Dygnarowicz , B. Ferrazzi , A. Fiorentini , C.S. Garde , G. Galiński , K. Graham , R. Gornea , M. Hartz , J. Holeczek , S. Jagtap , M. Kala , M. Ziembicki\",\"doi\":\"10.1016/j.nima.2025.170903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The multi-Photomultiplier Tube (mPMT) photosensors will be used in the Water Cherenkov Test Experiment (WCTE) to efficiently detect the photons produced in the whole detector. One of the aims behind the development of WCTE is to test the technology and implement it in future water Cherenkov experiments such as the Hyper-Kamiokande experiment and its Intermediate Water Cherenkov Detector. Each mPMT is built using nineteen 3-inch PMTs arranged on a semi-spherical support matrix. In this paper, we describe the design and manufacture of the mechanical components, the procedures for casting an optical gel between PMTs and acrylic cover, and the overall assembly procedure of the mPMTs. Details of the electronics used in the mPMT modules are not included in this paper and will be presented in a separate publication. We also report on the R&D performed on the selection of the optical gel ratio along with transmittance measurements and the reflectance measurements performed on the aluminium reflector. We also present the optical tests performed on the mPMT module using a 405 nm LED and the resulting increase in the effective photosensitive area by surrounding the PMTs with a reflector. A summary of the production and installation of the mPMTs for the WCTE is also presented in this paper.</div></div>\",\"PeriodicalId\":19359,\"journal\":{\"name\":\"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment\",\"volume\":\"1081 \",\"pages\":\"Article 170903\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168900225007053\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168900225007053","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Assembly, testing, and installation of mPMT photosensor for the Water Cherenkov Test Experiment
The multi-Photomultiplier Tube (mPMT) photosensors will be used in the Water Cherenkov Test Experiment (WCTE) to efficiently detect the photons produced in the whole detector. One of the aims behind the development of WCTE is to test the technology and implement it in future water Cherenkov experiments such as the Hyper-Kamiokande experiment and its Intermediate Water Cherenkov Detector. Each mPMT is built using nineteen 3-inch PMTs arranged on a semi-spherical support matrix. In this paper, we describe the design and manufacture of the mechanical components, the procedures for casting an optical gel between PMTs and acrylic cover, and the overall assembly procedure of the mPMTs. Details of the electronics used in the mPMT modules are not included in this paper and will be presented in a separate publication. We also report on the R&D performed on the selection of the optical gel ratio along with transmittance measurements and the reflectance measurements performed on the aluminium reflector. We also present the optical tests performed on the mPMT module using a 405 nm LED and the resulting increase in the effective photosensitive area by surrounding the PMTs with a reflector. A summary of the production and installation of the mPMTs for the WCTE is also presented in this paper.
期刊介绍:
Section A of Nuclear Instruments and Methods in Physics Research publishes papers on design, manufacturing and performance of scientific instruments with an emphasis on large scale facilities. This includes the development of particle accelerators, ion sources, beam transport systems and target arrangements as well as the use of secondary phenomena such as synchrotron radiation and free electron lasers. It also includes all types of instrumentation for the detection and spectrometry of radiations from high energy processes and nuclear decays, as well as instrumentation for experiments at nuclear reactors. Specialized electronics for nuclear and other types of spectrometry as well as computerization of measurements and control systems in this area also find their place in the A section.
Theoretical as well as experimental papers are accepted.