基于合成数据和RGB-D数据融合的道路裂缝分割

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Benedict Marsh, Ruiheng Wu
{"title":"基于合成数据和RGB-D数据融合的道路裂缝分割","authors":"Benedict Marsh,&nbsp;Ruiheng Wu","doi":"10.1016/j.cviu.2025.104452","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we use deep learning on the task of crack segmentation using a novel data fusion approach with RGB-D data. We use an existing architecture with DeepLabV3 and synthetic data to address the issue of limited availability for real-world data. The synthetic data is generated with Blender and BlenSor to accurately model the real-world crack scenarios. We train the model with a mixture of real-world data and synthetic data and evaluate it on a real-world dataset. The results show significant improvements over baseline models that only use the RGB data when evaluated with the IoU and F1-score. This demonstrates the success of using synthetic data for crack segmentation with data fusion and suggests a promising direction for future crack detection research to provide increased accuracy in automated maintenance and monitoring applications.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"260 ","pages":"Article 104452"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crack segmentation in roads using synthetic data and RGB-D data fusion\",\"authors\":\"Benedict Marsh,&nbsp;Ruiheng Wu\",\"doi\":\"10.1016/j.cviu.2025.104452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we use deep learning on the task of crack segmentation using a novel data fusion approach with RGB-D data. We use an existing architecture with DeepLabV3 and synthetic data to address the issue of limited availability for real-world data. The synthetic data is generated with Blender and BlenSor to accurately model the real-world crack scenarios. We train the model with a mixture of real-world data and synthetic data and evaluate it on a real-world dataset. The results show significant improvements over baseline models that only use the RGB data when evaluated with the IoU and F1-score. This demonstrates the success of using synthetic data for crack segmentation with data fusion and suggests a promising direction for future crack detection research to provide increased accuracy in automated maintenance and monitoring applications.</div></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":\"260 \",\"pages\":\"Article 104452\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077314225001754\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314225001754","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们使用一种新的RGB-D数据融合方法将深度学习应用于裂缝分割任务。我们使用DeepLabV3和合成数据的现有架构来解决现实世界数据可用性有限的问题。合成数据是用Blender和BlenSor生成的,以准确地模拟真实世界的裂缝场景。我们用真实数据和合成数据的混合训练模型,并在真实数据集上对其进行评估。结果表明,在使用IoU和f1评分进行评估时,仅使用RGB数据的基线模型有显著改善。这证明了利用数据融合的合成数据进行裂缝分割的成功,并为未来裂缝检测研究提供了一个有希望的方向,以提高自动化维护和监测应用的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crack segmentation in roads using synthetic data and RGB-D data fusion
In this paper, we use deep learning on the task of crack segmentation using a novel data fusion approach with RGB-D data. We use an existing architecture with DeepLabV3 and synthetic data to address the issue of limited availability for real-world data. The synthetic data is generated with Blender and BlenSor to accurately model the real-world crack scenarios. We train the model with a mixture of real-world data and synthetic data and evaluate it on a real-world dataset. The results show significant improvements over baseline models that only use the RGB data when evaluated with the IoU and F1-score. This demonstrates the success of using synthetic data for crack segmentation with data fusion and suggests a promising direction for future crack detection research to provide increased accuracy in automated maintenance and monitoring applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信