幂律非线性广义(3+1)-D Camassa-Holm-Kadomtsev-Petviashvili方程的精确显式解和守恒律

Q1 Mathematics
Thokozani Blessing Shiba, Khadijo Rashid Adem
{"title":"幂律非线性广义(3+1)-D Camassa-Holm-Kadomtsev-Petviashvili方程的精确显式解和守恒律","authors":"Thokozani Blessing Shiba,&nbsp;Khadijo Rashid Adem","doi":"10.1016/j.padiff.2025.101257","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the Camassa–Holm–Kadomtsev–Petviashvili equation with power law nonlinearity in (3+1)-D. The highlighted equation appears in mathematical physics, particularly in the study of nonlinear optics, plasma, integrable systems, and soliton theory, among other areas. The integration of the underlying equation is done using Lie symmetry analysis. To get more precise answers, the ansatz approach is applied. Traveling wave solutions are then obtained. The multiplier approach will be used to obtain conservation laws for the underlying equation.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101257"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the exact explicit solutions and conservation laws of the generalized (3+1)-D Camassa–Holm–Kadomtsev–Petviashvili equation with power law nonlinearity\",\"authors\":\"Thokozani Blessing Shiba,&nbsp;Khadijo Rashid Adem\",\"doi\":\"10.1016/j.padiff.2025.101257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines the Camassa–Holm–Kadomtsev–Petviashvili equation with power law nonlinearity in (3+1)-D. The highlighted equation appears in mathematical physics, particularly in the study of nonlinear optics, plasma, integrable systems, and soliton theory, among other areas. The integration of the underlying equation is done using Lie symmetry analysis. To get more precise answers, the ansatz approach is applied. Traveling wave solutions are then obtained. The multiplier approach will be used to obtain conservation laws for the underlying equation.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"15 \",\"pages\":\"Article 101257\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125001846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了(3+1)-D中具有幂律非线性的Camassa-Holm-Kadomtsev-Petviashvili方程。突出显示的方程出现在数学物理中,特别是在非线性光学、等离子体、可积系统和孤子理论等领域的研究中。利用李氏对称分析对底层方程进行积分。为了得到更精确的答案,采用了ansatz方法。然后得到行波解。乘数法将用于获得基本方程的守恒定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the exact explicit solutions and conservation laws of the generalized (3+1)-D Camassa–Holm–Kadomtsev–Petviashvili equation with power law nonlinearity
This study examines the Camassa–Holm–Kadomtsev–Petviashvili equation with power law nonlinearity in (3+1)-D. The highlighted equation appears in mathematical physics, particularly in the study of nonlinear optics, plasma, integrable systems, and soliton theory, among other areas. The integration of the underlying equation is done using Lie symmetry analysis. To get more precise answers, the ansatz approach is applied. Traveling wave solutions are then obtained. The multiplier approach will be used to obtain conservation laws for the underlying equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信