用于施工监控的多粒度班组活动识别

IF 11.5 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Cheng Yun Tsai, Mik Wanul Khosiin, Jacob J. Lin, Chuin-Shan Chen
{"title":"用于施工监控的多粒度班组活动识别","authors":"Cheng Yun Tsai,&nbsp;Mik Wanul Khosiin,&nbsp;Jacob J. Lin,&nbsp;Chuin-Shan Chen","doi":"10.1016/j.autcon.2025.106428","DOIUrl":null,"url":null,"abstract":"<div><div>The labor force is vital to construction projects, but traditional manual methods for productivity analysis are time-consuming and error-prone. Recent advancements in computer vision and deep learning offer automated solutions, yet most studies focus on low-level pose recognition, neglecting the collaborative dynamics of construction sites. This paper introduces a multi-granular crew activity recognition framework that identifies individual actions, groups collaborating workers, and links them to specific tasks. Using graph-based representations and self-attention mechanisms, the model integrates spatial and contextual information for accurate recognition. Experiments on a dataset covering rebar, formwork, and concrete operations show an overall F1 Score of 70.31%. Results highlight the importance of balancing visual features and spatial proximity for optimal performance. This framework offers an efficient solution for construction site monitoring and lays groundwork for future research on temporal modeling and human-object interaction analysis.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"179 ","pages":"Article 106428"},"PeriodicalIF":11.5000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-granular crew activity recognition for construction monitoring\",\"authors\":\"Cheng Yun Tsai,&nbsp;Mik Wanul Khosiin,&nbsp;Jacob J. Lin,&nbsp;Chuin-Shan Chen\",\"doi\":\"10.1016/j.autcon.2025.106428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The labor force is vital to construction projects, but traditional manual methods for productivity analysis are time-consuming and error-prone. Recent advancements in computer vision and deep learning offer automated solutions, yet most studies focus on low-level pose recognition, neglecting the collaborative dynamics of construction sites. This paper introduces a multi-granular crew activity recognition framework that identifies individual actions, groups collaborating workers, and links them to specific tasks. Using graph-based representations and self-attention mechanisms, the model integrates spatial and contextual information for accurate recognition. Experiments on a dataset covering rebar, formwork, and concrete operations show an overall F1 Score of 70.31%. Results highlight the importance of balancing visual features and spatial proximity for optimal performance. This framework offers an efficient solution for construction site monitoring and lays groundwork for future research on temporal modeling and human-object interaction analysis.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"179 \",\"pages\":\"Article 106428\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580525004686\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525004686","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

劳动力对建设项目至关重要,但是传统的手工生产率分析方法既耗时又容易出错。计算机视觉和深度学习的最新进展提供了自动化解决方案,但大多数研究都集中在低级姿态识别上,忽视了建筑工地的协作动态。本文介绍了一个多粒度的团队活动识别框架,该框架可以识别个人行为、团队协作工作人员,并将他们与特定任务联系起来。利用基于图的表示和自注意机制,该模型集成了空间和上下文信息,以实现准确的识别。在涵盖钢筋、模板和混凝土操作的数据集上进行的实验表明,F1得分为70.31%。结果强调了平衡视觉特征和空间接近对于最佳性能的重要性。该框架为施工现场监测提供了有效的解决方案,为未来的时间建模和人物交互分析研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi-granular crew activity recognition for construction monitoring

Multi-granular crew activity recognition for construction monitoring
The labor force is vital to construction projects, but traditional manual methods for productivity analysis are time-consuming and error-prone. Recent advancements in computer vision and deep learning offer automated solutions, yet most studies focus on low-level pose recognition, neglecting the collaborative dynamics of construction sites. This paper introduces a multi-granular crew activity recognition framework that identifies individual actions, groups collaborating workers, and links them to specific tasks. Using graph-based representations and self-attention mechanisms, the model integrates spatial and contextual information for accurate recognition. Experiments on a dataset covering rebar, formwork, and concrete operations show an overall F1 Score of 70.31%. Results highlight the importance of balancing visual features and spatial proximity for optimal performance. This framework offers an efficient solution for construction site monitoring and lays groundwork for future research on temporal modeling and human-object interaction analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信