基于水凝胶的牙周组织再生平台研究进展

IF 4.2 3区 工程技术 Q2 ENGINEERING, BIOMEDICAL
Reihaneh Khademi, Mahshid Kharaziha
{"title":"基于水凝胶的牙周组织再生平台研究进展","authors":"Reihaneh Khademi,&nbsp;Mahshid Kharaziha","doi":"10.1016/j.cobme.2025.100615","DOIUrl":null,"url":null,"abstract":"<div><div>Periodontitis is a severe and progressive inflammatory disease triggered by microbial infection, destroying essential tooth-supporting structures, including the alveolar bone, gingiva, periodontal ligament, and cementum. While traditional therapies like scaling and root planning can effectively manage disease progression, they often fail to restore the natural architecture and functionality of periodontal tissues due to the limited regenerative capacity of these structures. Periodontal tissue engineering has emerged as a promising solution to this challenge. This technology is based on multifunctional biomaterials, especially hydrogels, for restoring damaged alveolar bone, periodontal ligament, and root cementum. This review aims to provide a comprehensive overview of the properties required for hydrogels to facilitate periodontal tissue regeneration. Moreover, it discusses the use of hydrogels as delivery systems for cells, drugs, and growth factors, as well as their role in photothermal therapy and periodontal tissue regeneration. Finally, the review addresses the current challenges associated with the use of hydrogels and outlines the potential future directions for integrating hydrogels into periodontitis treatment and diagnosis.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"35 ","pages":"Article 100615"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in hydrogel-based platforms for periodontal tissue regeneration\",\"authors\":\"Reihaneh Khademi,&nbsp;Mahshid Kharaziha\",\"doi\":\"10.1016/j.cobme.2025.100615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Periodontitis is a severe and progressive inflammatory disease triggered by microbial infection, destroying essential tooth-supporting structures, including the alveolar bone, gingiva, periodontal ligament, and cementum. While traditional therapies like scaling and root planning can effectively manage disease progression, they often fail to restore the natural architecture and functionality of periodontal tissues due to the limited regenerative capacity of these structures. Periodontal tissue engineering has emerged as a promising solution to this challenge. This technology is based on multifunctional biomaterials, especially hydrogels, for restoring damaged alveolar bone, periodontal ligament, and root cementum. This review aims to provide a comprehensive overview of the properties required for hydrogels to facilitate periodontal tissue regeneration. Moreover, it discusses the use of hydrogels as delivery systems for cells, drugs, and growth factors, as well as their role in photothermal therapy and periodontal tissue regeneration. Finally, the review addresses the current challenges associated with the use of hydrogels and outlines the potential future directions for integrating hydrogels into periodontitis treatment and diagnosis.</div></div>\",\"PeriodicalId\":36748,\"journal\":{\"name\":\"Current Opinion in Biomedical Engineering\",\"volume\":\"35 \",\"pages\":\"Article 100615\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468451125000406\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451125000406","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

牙周炎是一种严重的进行性炎症性疾病,由微生物感染引起,破坏牙齿的基本支撑结构,包括牙槽骨、牙龈、牙周韧带和牙骨质。虽然像刮治和牙根规划这样的传统疗法可以有效地控制疾病的进展,但由于牙周组织的再生能力有限,它们往往无法恢复牙周组织的自然结构和功能。牙周组织工程已成为解决这一挑战的一个有希望的解决方案。该技术基于多功能生物材料,特别是水凝胶,用于修复受损的牙槽骨、牙周韧带和牙根骨质。本文综述了促进牙周组织再生所需的水凝胶的性能。此外,它还讨论了水凝胶作为细胞、药物和生长因子的递送系统的使用,以及它们在光热治疗和牙周组织再生中的作用。最后,回顾了目前与水凝胶使用相关的挑战,并概述了将水凝胶整合到牙周炎治疗和诊断中的潜在未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent advances in hydrogel-based platforms for periodontal tissue regeneration
Periodontitis is a severe and progressive inflammatory disease triggered by microbial infection, destroying essential tooth-supporting structures, including the alveolar bone, gingiva, periodontal ligament, and cementum. While traditional therapies like scaling and root planning can effectively manage disease progression, they often fail to restore the natural architecture and functionality of periodontal tissues due to the limited regenerative capacity of these structures. Periodontal tissue engineering has emerged as a promising solution to this challenge. This technology is based on multifunctional biomaterials, especially hydrogels, for restoring damaged alveolar bone, periodontal ligament, and root cementum. This review aims to provide a comprehensive overview of the properties required for hydrogels to facilitate periodontal tissue regeneration. Moreover, it discusses the use of hydrogels as delivery systems for cells, drugs, and growth factors, as well as their role in photothermal therapy and periodontal tissue regeneration. Finally, the review addresses the current challenges associated with the use of hydrogels and outlines the potential future directions for integrating hydrogels into periodontitis treatment and diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Biomedical Engineering
Current Opinion in Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
2.60%
发文量
59
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信