Tahira Hussain , Fizza Khalid , Azaz Nigah , Muhammad Bilal , Syed Mujtaba ul hassan , Falak Sher , M.A. Rafiq
{"title":"三元青石(PbSnS2)的氢传感生长及其介电弛豫、交流电导率和模量光谱研究","authors":"Tahira Hussain , Fizza Khalid , Azaz Nigah , Muhammad Bilal , Syed Mujtaba ul hassan , Falak Sher , M.A. Rafiq","doi":"10.1016/j.physb.2025.417522","DOIUrl":null,"url":null,"abstract":"<div><div>We have synthesized <span><math><msub><mrow><mi>PbSnS</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> by conventional solid-state technique. The X-ray diffraction (XRD) confirmed formation of pure orthorhombic <span><math><msub><mrow><mi>PbSnS</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Mixed shape morphology was observed by scanning electron microscopy (SEM). A direct band gap of <span><math><mo>∼</mo></math></span>2.89 eV was estimated from uv-vis spectroscopy. Energy dispersive x-ray spectroscopy (EDS) confirmed the presence of lead, tin and sulfur only. The ac electrical measurements were performed from 218 K–298 K with an applied frequency varied from 20 Hz to 2 MHz. The ac conductivity obeyed Jonscher’s power law. The <span><math><mi>s</mi></math></span> parameter variation with temperature suggested non-overlapping small polaron hopping (NSPH) as a dominant conduction mechanism for <span><math><msub><mrow><mi>PbSnS</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. From NSPH model, density of states (DOS) , hopping energy and hopping distance were calculated to be (<span><math><mo>∼</mo></math></span> <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>21</mn></mrow></msup></mrow></math></span>–<span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>23</mn></mrow></msup></mrow></math></span> <span><math><mrow><msup><mrow><mi>eV</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>), <span><math><mo>∼</mo></math></span> <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>10</mn></mrow></msup></mrow></math></span> m and (<span><math><mrow><mo>∼</mo><mn>0</mn><mo>.</mo><mn>35</mn><mtext>–</mtext><mn>0</mn><mo>.</mo><mn>48</mn><mspace></mspace><mi>eV</mi></mrow></math></span>), respectively. The <span><math><msub><mrow><mi>PbSnS</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> responded to <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> gas with response of 14% at 160 mbars. Moreover, <span><math><msub><mrow><mi>PbSnS</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> sensors showed reproducibility, stability and selectivity towards <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"716 ","pages":"Article 417522"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth of ternary teallite (PbSnS2) for hydrogen sensing and its dielectric relaxation, ac conductivity and modulus spectroscopic studies\",\"authors\":\"Tahira Hussain , Fizza Khalid , Azaz Nigah , Muhammad Bilal , Syed Mujtaba ul hassan , Falak Sher , M.A. Rafiq\",\"doi\":\"10.1016/j.physb.2025.417522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We have synthesized <span><math><msub><mrow><mi>PbSnS</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> by conventional solid-state technique. The X-ray diffraction (XRD) confirmed formation of pure orthorhombic <span><math><msub><mrow><mi>PbSnS</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Mixed shape morphology was observed by scanning electron microscopy (SEM). A direct band gap of <span><math><mo>∼</mo></math></span>2.89 eV was estimated from uv-vis spectroscopy. Energy dispersive x-ray spectroscopy (EDS) confirmed the presence of lead, tin and sulfur only. The ac electrical measurements were performed from 218 K–298 K with an applied frequency varied from 20 Hz to 2 MHz. The ac conductivity obeyed Jonscher’s power law. The <span><math><mi>s</mi></math></span> parameter variation with temperature suggested non-overlapping small polaron hopping (NSPH) as a dominant conduction mechanism for <span><math><msub><mrow><mi>PbSnS</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. From NSPH model, density of states (DOS) , hopping energy and hopping distance were calculated to be (<span><math><mo>∼</mo></math></span> <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>21</mn></mrow></msup></mrow></math></span>–<span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>23</mn></mrow></msup></mrow></math></span> <span><math><mrow><msup><mrow><mi>eV</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>), <span><math><mo>∼</mo></math></span> <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>10</mn></mrow></msup></mrow></math></span> m and (<span><math><mrow><mo>∼</mo><mn>0</mn><mo>.</mo><mn>35</mn><mtext>–</mtext><mn>0</mn><mo>.</mo><mn>48</mn><mspace></mspace><mi>eV</mi></mrow></math></span>), respectively. The <span><math><msub><mrow><mi>PbSnS</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> responded to <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> gas with response of 14% at 160 mbars. Moreover, <span><math><msub><mrow><mi>PbSnS</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> sensors showed reproducibility, stability and selectivity towards <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"716 \",\"pages\":\"Article 417522\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625006398\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625006398","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Growth of ternary teallite (PbSnS2) for hydrogen sensing and its dielectric relaxation, ac conductivity and modulus spectroscopic studies
We have synthesized by conventional solid-state technique. The X-ray diffraction (XRD) confirmed formation of pure orthorhombic . Mixed shape morphology was observed by scanning electron microscopy (SEM). A direct band gap of 2.89 eV was estimated from uv-vis spectroscopy. Energy dispersive x-ray spectroscopy (EDS) confirmed the presence of lead, tin and sulfur only. The ac electrical measurements were performed from 218 K–298 K with an applied frequency varied from 20 Hz to 2 MHz. The ac conductivity obeyed Jonscher’s power law. The parameter variation with temperature suggested non-overlapping small polaron hopping (NSPH) as a dominant conduction mechanism for . From NSPH model, density of states (DOS) , hopping energy and hopping distance were calculated to be ( – ), m and (), respectively. The responded to gas with response of 14% at 160 mbars. Moreover, sensors showed reproducibility, stability and selectivity towards .
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces