基于垂直双栅隧道场效应晶体管(VDG-TFET)的高性能双波段光敏传感器

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Hu Liu, Pengyu Wang, Mingze Du, Yubin Li, Lei Pan, Yifan Lei, Chunyan Li, Yongrui, Zhang
{"title":"基于垂直双栅隧道场效应晶体管(VDG-TFET)的高性能双波段光敏传感器","authors":"Hu Liu,&nbsp;Pengyu Wang,&nbsp;Mingze Du,&nbsp;Yubin Li,&nbsp;Lei Pan,&nbsp;Yifan Lei,&nbsp;Chunyan Li,&nbsp;Yongrui,&nbsp;Zhang","doi":"10.1016/j.mejo.2025.106832","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a high-performance dual-band photosensor based on a vertical double-gate tunnel field-effect transistor (VDG-TFET), enabling detection across 400–1100 nm. The device features a large light-absorption area, enhancing the generation of photocarriers and increasing the photocurrent. The incorporation of a vertical double-gate structure facilitates the modulation of the electric field distribution in the channel, improving the tunneling probability at the source-channel interface and resulting in higher sensitivity during signal transmission. Investigations demonstrates that the photosensor achieves a photoresponsivity of 106 mA/W at 400 nm wavelength, with an exceptional signal-to-noise ratio (SNR) reaching 175 dB and quantum efficiency of 33 %. In the near-infrared regime, the device exhibits a spectral sensitivity exceeding 300, while maintaining remarkable specific detectivity (<em>D</em>∗) values of 1.2 × 10<sup>12</sup> Jones at 700 nm and 5.7 × 10<sup>10</sup> Jones at 1000 nm. Furthermore, temperature-dependent analysis reveals suppressed thermal noise at lower temperatures, sustaining high SNR and <em>D</em>∗, while elevated temperatures degrade performance due to noise interference.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":"165 ","pages":"Article 106832"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-performance vertical double-gate tunnel field-effect transistor (VDG-TFET)-based dual-band photosensor\",\"authors\":\"Hu Liu,&nbsp;Pengyu Wang,&nbsp;Mingze Du,&nbsp;Yubin Li,&nbsp;Lei Pan,&nbsp;Yifan Lei,&nbsp;Chunyan Li,&nbsp;Yongrui,&nbsp;Zhang\",\"doi\":\"10.1016/j.mejo.2025.106832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a high-performance dual-band photosensor based on a vertical double-gate tunnel field-effect transistor (VDG-TFET), enabling detection across 400–1100 nm. The device features a large light-absorption area, enhancing the generation of photocarriers and increasing the photocurrent. The incorporation of a vertical double-gate structure facilitates the modulation of the electric field distribution in the channel, improving the tunneling probability at the source-channel interface and resulting in higher sensitivity during signal transmission. Investigations demonstrates that the photosensor achieves a photoresponsivity of 106 mA/W at 400 nm wavelength, with an exceptional signal-to-noise ratio (SNR) reaching 175 dB and quantum efficiency of 33 %. In the near-infrared regime, the device exhibits a spectral sensitivity exceeding 300, while maintaining remarkable specific detectivity (<em>D</em>∗) values of 1.2 × 10<sup>12</sup> Jones at 700 nm and 5.7 × 10<sup>10</sup> Jones at 1000 nm. Furthermore, temperature-dependent analysis reveals suppressed thermal noise at lower temperatures, sustaining high SNR and <em>D</em>∗, while elevated temperatures degrade performance due to noise interference.</div></div>\",\"PeriodicalId\":49818,\"journal\":{\"name\":\"Microelectronics Journal\",\"volume\":\"165 \",\"pages\":\"Article 106832\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879239125002814\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239125002814","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于垂直双栅隧道场效应晶体管(VDG-TFET)的高性能双频光敏传感器,可实现400-1100 nm的检测。该器件具有较大的光吸收面积,增强了光载流子的产生,增加了光电流。垂直双栅结构的引入有利于通道内电场分布的调制,提高了源-通道界面处的隧穿概率,从而提高了信号传输过程中的灵敏度。研究表明,该光敏传感器在400 nm波长下的光响应率为106 mA/W,信噪比(SNR)达到175 dB,量子效率为33%。在近红外波段,该器件表现出超过300的光谱灵敏度,同时在700 nm处保持了1.2 × 1012琼斯和1000 nm处保持了5.7 × 1010琼斯的显著比探测率(D∗)值。此外,温度相关分析表明,在较低温度下,热噪声被抑制,保持较高的信噪比和D *,而高温则由于噪声干扰而降低性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A high-performance vertical double-gate tunnel field-effect transistor (VDG-TFET)-based dual-band photosensor
This study presents a high-performance dual-band photosensor based on a vertical double-gate tunnel field-effect transistor (VDG-TFET), enabling detection across 400–1100 nm. The device features a large light-absorption area, enhancing the generation of photocarriers and increasing the photocurrent. The incorporation of a vertical double-gate structure facilitates the modulation of the electric field distribution in the channel, improving the tunneling probability at the source-channel interface and resulting in higher sensitivity during signal transmission. Investigations demonstrates that the photosensor achieves a photoresponsivity of 106 mA/W at 400 nm wavelength, with an exceptional signal-to-noise ratio (SNR) reaching 175 dB and quantum efficiency of 33 %. In the near-infrared regime, the device exhibits a spectral sensitivity exceeding 300, while maintaining remarkable specific detectivity (D∗) values of 1.2 × 1012 Jones at 700 nm and 5.7 × 1010 Jones at 1000 nm. Furthermore, temperature-dependent analysis reveals suppressed thermal noise at lower temperatures, sustaining high SNR and D∗, while elevated temperatures degrade performance due to noise interference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronics Journal
Microelectronics Journal 工程技术-工程:电子与电气
CiteScore
4.00
自引率
27.30%
发文量
222
审稿时长
43 days
期刊介绍: Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems. The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc. Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信