在Kerr时空中连接Teukolsky方程的散射、单态和MST的重归一化角动量

IF 3.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Zachary Nasipak
{"title":"在Kerr时空中连接Teukolsky方程的散射、单态和MST的重归一化角动量","authors":"Zachary Nasipak","doi":"10.1088/1361-6382/adf0df","DOIUrl":null,"url":null,"abstract":"The Teukolsky equation describes perturbations of Kerr spacetime and is central to the study of rotating black holes and gravitational waves. In the frequency domain, the Teukolsky equation separates into radial and angular ordinary differential equations (ODEs). Mano, Suzuki, and Takasugi (MST) found semi-analytic solutions to the homogeneous radial Teukolsky equation in terms of series of analytic special functions. The MST expansions hinge on an auxiliary parameter known as the renormalized angular momentumν, which one must calculate to ensure the convergence of these series solutions. In this work, we present a method for calculating ν via monodromy eigenvalues, which capture the behavior of ODEs and their solutions in the complex domain near their singular points. We directly relate the monodromy data of the radial Teukolsky equation to the parameter ν and provide a numerical scheme for calculating ν based on monodromy. With this method we evaluate ν in different regions of parameter space and analyze the numerical stability of this approach. We also highlight how, through ν, monodromy data are linked to scattering amplitudes for generic (linear) perturbations of Kerr spacetime.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"54 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connecting scattering, monodromy, and MST’s renormalized angular momentum for the Teukolsky equation in Kerr spacetime\",\"authors\":\"Zachary Nasipak\",\"doi\":\"10.1088/1361-6382/adf0df\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Teukolsky equation describes perturbations of Kerr spacetime and is central to the study of rotating black holes and gravitational waves. In the frequency domain, the Teukolsky equation separates into radial and angular ordinary differential equations (ODEs). Mano, Suzuki, and Takasugi (MST) found semi-analytic solutions to the homogeneous radial Teukolsky equation in terms of series of analytic special functions. The MST expansions hinge on an auxiliary parameter known as the renormalized angular momentumν, which one must calculate to ensure the convergence of these series solutions. In this work, we present a method for calculating ν via monodromy eigenvalues, which capture the behavior of ODEs and their solutions in the complex domain near their singular points. We directly relate the monodromy data of the radial Teukolsky equation to the parameter ν and provide a numerical scheme for calculating ν based on monodromy. With this method we evaluate ν in different regions of parameter space and analyze the numerical stability of this approach. We also highlight how, through ν, monodromy data are linked to scattering amplitudes for generic (linear) perturbations of Kerr spacetime.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/adf0df\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adf0df","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

Teukolsky方程描述了克尔时空的扰动,是旋转黑洞和引力波研究的核心。在频域,Teukolsky方程分为径向常微分方程和角常微分方程。Mano, Suzuki和Takasugi (MST)用一系列解析特殊函数找到了齐次径向Teukolsky方程的半解析解。MST展开取决于一个辅助参数,即重归一化角动量,必须计算它以确保这些级数解的收敛性。在这项工作中,我们提出了一种通过单特征值计算ν的方法,该方法捕获了ode及其在其奇异点附近的复域中的行为及其解。我们将径向Teukolsky方程的单调数据与参数ν直接联系起来,并提供了一种基于单调计算ν的数值格式。利用该方法在参数空间的不同区域求出ν,并分析了该方法的数值稳定性。我们还强调了如何通过ν,将单态数据与克尔时空的一般(线性)扰动的散射振幅联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connecting scattering, monodromy, and MST’s renormalized angular momentum for the Teukolsky equation in Kerr spacetime
The Teukolsky equation describes perturbations of Kerr spacetime and is central to the study of rotating black holes and gravitational waves. In the frequency domain, the Teukolsky equation separates into radial and angular ordinary differential equations (ODEs). Mano, Suzuki, and Takasugi (MST) found semi-analytic solutions to the homogeneous radial Teukolsky equation in terms of series of analytic special functions. The MST expansions hinge on an auxiliary parameter known as the renormalized angular momentumν, which one must calculate to ensure the convergence of these series solutions. In this work, we present a method for calculating ν via monodromy eigenvalues, which capture the behavior of ODEs and their solutions in the complex domain near their singular points. We directly relate the monodromy data of the radial Teukolsky equation to the parameter ν and provide a numerical scheme for calculating ν based on monodromy. With this method we evaluate ν in different regions of parameter space and analyze the numerical stability of this approach. We also highlight how, through ν, monodromy data are linked to scattering amplitudes for generic (linear) perturbations of Kerr spacetime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信