Honghao Bi, Kehan Ren, Pan Wang, Ermin Li, Xu Han, Wen Wang, Jing Yang, Inci Aydemir, Kara Tao, Renee Ma, Lucy A. Godley, Yan Liu, Vipul Shukla, Elizabeth T. Bartom, Yuefeng Tang, Lionel Blanc, Madina Sukhanova, Peng Ji
{"title":"DDX41解决g -四联体维持红系基因组完整性和防止cgas介导的细胞死亡","authors":"Honghao Bi, Kehan Ren, Pan Wang, Ermin Li, Xu Han, Wen Wang, Jing Yang, Inci Aydemir, Kara Tao, Renee Ma, Lucy A. Godley, Yan Liu, Vipul Shukla, Elizabeth T. Bartom, Yuefeng Tang, Lionel Blanc, Madina Sukhanova, Peng Ji","doi":"10.1038/s41467-025-62307-7","DOIUrl":null,"url":null,"abstract":"<p>Deleterious germline <i>DDX41</i> variants constitute the most common inherited predisposition disorder linked to myeloid neoplasms (MNs), yet their role in MNs remains unclear. Here we show that DDX41 is essential for erythropoiesis but dispensable for other hematopoietic lineages. Ddx41 knockout in early erythropoiesis is embryonically lethal, while knockout in late-stage terminal erythropoiesis allows mice to survive with normal blood counts. DDX41 deficiency induces a significant upregulation of G-quadruplexes (G4), which co-distribute with DDX41 on the erythroid genome. DDX41 directly binds to and resolves G4, which is significantly compromised in MN-associated <i>DDX41</i> mutants. G4 accumulation induces erythroid genome instability, ribosomal defects, and p53 upregulation. However, p53 deficiency does not rescue the embryonic death of Ddx41 hematopoietic-specific knockout mice. In parallel, genome instability also activates the cGas-Sting pathway, impairing survival, as cGas deficiency rescues the lethality of hematopoietic-specific Ddx41 knockout mice. This is supported by data from a DDX41-mutated MN patient and human iPSC-derived bone marrow organoids. Our study establishes DDX41 as a G4 resolvase, essential for erythroid genome stability and suppressing the cGAS-STING pathway.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"52 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DDX41 resolves G-quadruplexes to maintain erythroid genome integrity and prevent cGAS-mediated cell death\",\"authors\":\"Honghao Bi, Kehan Ren, Pan Wang, Ermin Li, Xu Han, Wen Wang, Jing Yang, Inci Aydemir, Kara Tao, Renee Ma, Lucy A. Godley, Yan Liu, Vipul Shukla, Elizabeth T. Bartom, Yuefeng Tang, Lionel Blanc, Madina Sukhanova, Peng Ji\",\"doi\":\"10.1038/s41467-025-62307-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deleterious germline <i>DDX41</i> variants constitute the most common inherited predisposition disorder linked to myeloid neoplasms (MNs), yet their role in MNs remains unclear. Here we show that DDX41 is essential for erythropoiesis but dispensable for other hematopoietic lineages. Ddx41 knockout in early erythropoiesis is embryonically lethal, while knockout in late-stage terminal erythropoiesis allows mice to survive with normal blood counts. DDX41 deficiency induces a significant upregulation of G-quadruplexes (G4), which co-distribute with DDX41 on the erythroid genome. DDX41 directly binds to and resolves G4, which is significantly compromised in MN-associated <i>DDX41</i> mutants. G4 accumulation induces erythroid genome instability, ribosomal defects, and p53 upregulation. However, p53 deficiency does not rescue the embryonic death of Ddx41 hematopoietic-specific knockout mice. In parallel, genome instability also activates the cGas-Sting pathway, impairing survival, as cGas deficiency rescues the lethality of hematopoietic-specific Ddx41 knockout mice. This is supported by data from a DDX41-mutated MN patient and human iPSC-derived bone marrow organoids. Our study establishes DDX41 as a G4 resolvase, essential for erythroid genome stability and suppressing the cGAS-STING pathway.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62307-7\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62307-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
DDX41 resolves G-quadruplexes to maintain erythroid genome integrity and prevent cGAS-mediated cell death
Deleterious germline DDX41 variants constitute the most common inherited predisposition disorder linked to myeloid neoplasms (MNs), yet their role in MNs remains unclear. Here we show that DDX41 is essential for erythropoiesis but dispensable for other hematopoietic lineages. Ddx41 knockout in early erythropoiesis is embryonically lethal, while knockout in late-stage terminal erythropoiesis allows mice to survive with normal blood counts. DDX41 deficiency induces a significant upregulation of G-quadruplexes (G4), which co-distribute with DDX41 on the erythroid genome. DDX41 directly binds to and resolves G4, which is significantly compromised in MN-associated DDX41 mutants. G4 accumulation induces erythroid genome instability, ribosomal defects, and p53 upregulation. However, p53 deficiency does not rescue the embryonic death of Ddx41 hematopoietic-specific knockout mice. In parallel, genome instability also activates the cGas-Sting pathway, impairing survival, as cGas deficiency rescues the lethality of hematopoietic-specific Ddx41 knockout mice. This is supported by data from a DDX41-mutated MN patient and human iPSC-derived bone marrow organoids. Our study establishes DDX41 as a G4 resolvase, essential for erythroid genome stability and suppressing the cGAS-STING pathway.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.