Elena Jordan, Malte Brinkmann, Alexandre Didier, Erik Jansson, Martin Steinel, Nils Huntemann, Hu Shao, Hendrik Siebeneich, Christof Wunderlich, Michael Johanning and Tanja E Mehlstäubler
{"title":"可扩展的基于芯片的3D离子阱","authors":"Elena Jordan, Malte Brinkmann, Alexandre Didier, Erik Jansson, Martin Steinel, Nils Huntemann, Hu Shao, Hendrik Siebeneich, Christof Wunderlich, Michael Johanning and Tanja E Mehlstäubler","doi":"10.1088/2058-9565/adf2db","DOIUrl":null,"url":null,"abstract":"Ion traps are used for a wide range of applications from metrology to quantum simulations and quantum information processing. Microfabricated chip-based 3D ion traps are scalable to store many ions for the realization of a large number of qubits, provide deep trapping potentials compared to surface traps, and very good shielding from external electric fields. In this work, we give an overview of our recent developments on chip-based 3D ion traps. Different types of chip materials, the integration of electronic filter components on-chip and compact electrical connections in vacuum are discussed. Further, based on finite element method simulations, we discuss how integrating micro-optics in 3D ion traps is possible without disturbing the trapped ions.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"15 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable chip-based 3D ion traps\",\"authors\":\"Elena Jordan, Malte Brinkmann, Alexandre Didier, Erik Jansson, Martin Steinel, Nils Huntemann, Hu Shao, Hendrik Siebeneich, Christof Wunderlich, Michael Johanning and Tanja E Mehlstäubler\",\"doi\":\"10.1088/2058-9565/adf2db\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ion traps are used for a wide range of applications from metrology to quantum simulations and quantum information processing. Microfabricated chip-based 3D ion traps are scalable to store many ions for the realization of a large number of qubits, provide deep trapping potentials compared to surface traps, and very good shielding from external electric fields. In this work, we give an overview of our recent developments on chip-based 3D ion traps. Different types of chip materials, the integration of electronic filter components on-chip and compact electrical connections in vacuum are discussed. Further, based on finite element method simulations, we discuss how integrating micro-optics in 3D ion traps is possible without disturbing the trapped ions.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/adf2db\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adf2db","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Ion traps are used for a wide range of applications from metrology to quantum simulations and quantum information processing. Microfabricated chip-based 3D ion traps are scalable to store many ions for the realization of a large number of qubits, provide deep trapping potentials compared to surface traps, and very good shielding from external electric fields. In this work, we give an overview of our recent developments on chip-based 3D ion traps. Different types of chip materials, the integration of electronic filter components on-chip and compact electrical connections in vacuum are discussed. Further, based on finite element method simulations, we discuss how integrating micro-optics in 3D ion traps is possible without disturbing the trapped ions.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.