d3-d3和d5-d5 M2R6配合物(M = Mo, Ru)的分子和电子结构研究R = CH3, CH2CMe3):金属-金属键序与MR3金字塔化的相互作用。

IF 4.7 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Thomas E. Shaw, Charlotte L. Stern, Titel Jurca, Jennifer C. Green, Alfred P. Sattelberger* and Bruce E. Bursten*, 
{"title":"d3-d3和d5-d5 M2R6配合物(M = Mo, Ru)的分子和电子结构研究R = CH3, CH2CMe3):金属-金属键序与MR3金字塔化的相互作用。","authors":"Thomas E. Shaw,&nbsp;Charlotte L. Stern,&nbsp;Titel Jurca,&nbsp;Jennifer C. Green,&nbsp;Alfred P. Sattelberger* and Bruce E. Bursten*,&nbsp;","doi":"10.1021/acs.inorgchem.5c01860","DOIUrl":null,"url":null,"abstract":"<p >Hexakis(neopentyl)diruthenium(III,III) [Ru<sub>2</sub>(CH<sub>2</sub>CMe<sub>3</sub>)<sub>6</sub> or Ru<sub>2</sub>Np<sub>6</sub>], first synthesized in 1984, is a <i>d<sup>5</sup>-d</i><sup>5</sup> analogue of the classic <i>d</i><sup>3</sup><i>-d</i><sup>3</sup> M<sub>2</sub>X<sub>6</sub> Chisholm-type, unsupported metal–metal triply-bonded Group 6 complexes. We report an alternative synthetic route to Ru<sub>2</sub>Np<sub>6</sub> and an updated low-temperature crystal structure. The Ru–Ru bond length (2.3141(3) Å) is only 0.15 Å longer than the Mo–Mo bond in Mo<sub>2</sub>Np<sub>6</sub>, less than might be expected upon adding four electrons. The Ru–Ru bond was originally proposed to be a triple bond, which seemed inconsistent with the usual M–M bonding model. We use DFT and TD-DFT calculations on Mo<sub>2</sub>R<sub>6</sub> and Ru<sub>2</sub>R<sub>6</sub> (R = Me, Np) to investigate the differences in metal–metal and metal–ligand bonding between the <i>d</i><sup>3</sup>-<i>d</i><sup>3</sup> and <i>d</i><sup>5</sup>-<i>d</i><sup>5</sup> systems. In the Ru<sub>2</sub>R<sub>6</sub> systems, the two RuR<sub>3</sub> fragments adopt a pyramidalized geometry to maximize ligand-to-metal donation and to shift electron density from the strongly antibonding Ru–Ru π* orbital to the weakly bonding Ru–Ru δ orbital, thus preserving some of the Ru–Ru π bonding. In contrast, the MoR<sub>3</sub> fragments in Mo<sub>2</sub>R<sub>6</sub> adopt a more trigonal planar geometry to preserve the Mo–Mo π bonding. The calculated and experimental UV–vis spectra are near band-for-band matches, and the energies and orbital characters of the excitations are presented.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"64 32","pages":"16393–16403"},"PeriodicalIF":4.7000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular and Electronic Structural Studies of d3-d3 and d5-d5 M2R6 Complexes (M = Mo, Ru; R = CH3, CH2CMe3): On the Interplay of Metal–Metal Bond Order and MR3 Pyramidalization\",\"authors\":\"Thomas E. Shaw,&nbsp;Charlotte L. Stern,&nbsp;Titel Jurca,&nbsp;Jennifer C. Green,&nbsp;Alfred P. Sattelberger* and Bruce E. Bursten*,&nbsp;\",\"doi\":\"10.1021/acs.inorgchem.5c01860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hexakis(neopentyl)diruthenium(III,III) [Ru<sub>2</sub>(CH<sub>2</sub>CMe<sub>3</sub>)<sub>6</sub> or Ru<sub>2</sub>Np<sub>6</sub>], first synthesized in 1984, is a <i>d<sup>5</sup>-d</i><sup>5</sup> analogue of the classic <i>d</i><sup>3</sup><i>-d</i><sup>3</sup> M<sub>2</sub>X<sub>6</sub> Chisholm-type, unsupported metal–metal triply-bonded Group 6 complexes. We report an alternative synthetic route to Ru<sub>2</sub>Np<sub>6</sub> and an updated low-temperature crystal structure. The Ru–Ru bond length (2.3141(3) Å) is only 0.15 Å longer than the Mo–Mo bond in Mo<sub>2</sub>Np<sub>6</sub>, less than might be expected upon adding four electrons. The Ru–Ru bond was originally proposed to be a triple bond, which seemed inconsistent with the usual M–M bonding model. We use DFT and TD-DFT calculations on Mo<sub>2</sub>R<sub>6</sub> and Ru<sub>2</sub>R<sub>6</sub> (R = Me, Np) to investigate the differences in metal–metal and metal–ligand bonding between the <i>d</i><sup>3</sup>-<i>d</i><sup>3</sup> and <i>d</i><sup>5</sup>-<i>d</i><sup>5</sup> systems. In the Ru<sub>2</sub>R<sub>6</sub> systems, the two RuR<sub>3</sub> fragments adopt a pyramidalized geometry to maximize ligand-to-metal donation and to shift electron density from the strongly antibonding Ru–Ru π* orbital to the weakly bonding Ru–Ru δ orbital, thus preserving some of the Ru–Ru π bonding. In contrast, the MoR<sub>3</sub> fragments in Mo<sub>2</sub>R<sub>6</sub> adopt a more trigonal planar geometry to preserve the Mo–Mo π bonding. The calculated and experimental UV–vis spectra are near band-for-band matches, and the energies and orbital characters of the excitations are presented.</p>\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"64 32\",\"pages\":\"16393–16403\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.inorgchem.5c01860\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.inorgchem.5c01860","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

Hexakis(neopentyl) di钌(III,III) [Ru2(CH2CMe3)6 or Ru2Np6]于1984年首次合成,是经典的d3-d3 M2X6 chisholm型无负载金属-金属三键6族配合物的d5-d5类似物。我们报告了Ru2Np6的替代合成路线和更新的低温晶体结构。在Mo2Np6中,Ru-Ru键的长度(2.3141(3)Å)仅比Mo-Mo键长0.15 Å,比添加4个电子时可能预期的要短。Ru-Ru键最初被提出是一个三键,这似乎与通常的M-M键模型不一致。我们使用DFT和TD-DFT计算Mo2R6和Ru2R6 (R = Me, Np)来研究d3-d3和d5-d5体系之间金属-金属和金属-配体键的差异。在Ru2R6体系中,两个RuR3碎片采用金字塔化的几何结构,以最大限度地提高配体对金属的给能,并将电子密度从强反键的Ru-Ru π*轨道转移到弱成键的Ru-Ru δ轨道,从而保留了一些Ru-Ru π成键。相比之下,Mo2R6中的MoR3碎片采用更三角形的平面几何形状来保持Mo-Mo π键合。计算得到的紫外-可见光谱与实验得到的紫外-可见光谱基本吻合,并给出了激发的能量和轨道特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Molecular and Electronic Structural Studies of d3-d3 and d5-d5 M2R6 Complexes (M = Mo, Ru; R = CH3, CH2CMe3): On the Interplay of Metal–Metal Bond Order and MR3 Pyramidalization

Molecular and Electronic Structural Studies of d3-d3 and d5-d5 M2R6 Complexes (M = Mo, Ru; R = CH3, CH2CMe3): On the Interplay of Metal–Metal Bond Order and MR3 Pyramidalization

Hexakis(neopentyl)diruthenium(III,III) [Ru2(CH2CMe3)6 or Ru2Np6], first synthesized in 1984, is a d5-d5 analogue of the classic d3-d3 M2X6 Chisholm-type, unsupported metal–metal triply-bonded Group 6 complexes. We report an alternative synthetic route to Ru2Np6 and an updated low-temperature crystal structure. The Ru–Ru bond length (2.3141(3) Å) is only 0.15 Å longer than the Mo–Mo bond in Mo2Np6, less than might be expected upon adding four electrons. The Ru–Ru bond was originally proposed to be a triple bond, which seemed inconsistent with the usual M–M bonding model. We use DFT and TD-DFT calculations on Mo2R6 and Ru2R6 (R = Me, Np) to investigate the differences in metal–metal and metal–ligand bonding between the d3-d3 and d5-d5 systems. In the Ru2R6 systems, the two RuR3 fragments adopt a pyramidalized geometry to maximize ligand-to-metal donation and to shift electron density from the strongly antibonding Ru–Ru π* orbital to the weakly bonding Ru–Ru δ orbital, thus preserving some of the Ru–Ru π bonding. In contrast, the MoR3 fragments in Mo2R6 adopt a more trigonal planar geometry to preserve the Mo–Mo π bonding. The calculated and experimental UV–vis spectra are near band-for-band matches, and the energies and orbital characters of the excitations are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信