人SGLT2的底物识别和释放机制。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Wenhao Cui,Zejian Sun,Jiaxuan Xu,Xiaoyu Liu,Yunlu Kang,Lei Chen
{"title":"人SGLT2的底物识别和释放机制。","authors":"Wenhao Cui,Zejian Sun,Jiaxuan Xu,Xiaoyu Liu,Yunlu Kang,Lei Chen","doi":"10.1038/s41467-025-62421-6","DOIUrl":null,"url":null,"abstract":"Glucose is a vital energy source essential for life and human health. Sodium-glucose cotransporter 2 (SGLT2) is a sodium-glucose symporter that utilizes the electrochemical gradient of sodium to reabsorb glucose from kidney filtrate back into circulation. SGLT2 plays a crucial role in maintaining blood glucose homeostasis and is an important drug target for type 2 diabetes. Despite its significance, the mechanisms by which SGLT2 recognizes and releases substrates during its transport cycle remain largely unknown. Here, we present structures of human SGLT2 in complex with a glucose analogue in the occluded conformation at 2.6 Å resolution, revealing a detailed hydrogen bonding network at the substrate binding site that governs substrate recognition. Additionally, structures of SGLT2 in both the substrate-bound inward-facing conformation and the substrate-free inward-facing conformations illustrate the structural changes that occur during substrate release into cytosol. Our structural analysis, combined with mutagenesis results, identifies specific polar interactions that are essential for maintaining the outer and inner gates in their closed conformations.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"38 1","pages":"7140"},"PeriodicalIF":15.7000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of substrate recognition and release of human SGLT2.\",\"authors\":\"Wenhao Cui,Zejian Sun,Jiaxuan Xu,Xiaoyu Liu,Yunlu Kang,Lei Chen\",\"doi\":\"10.1038/s41467-025-62421-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glucose is a vital energy source essential for life and human health. Sodium-glucose cotransporter 2 (SGLT2) is a sodium-glucose symporter that utilizes the electrochemical gradient of sodium to reabsorb glucose from kidney filtrate back into circulation. SGLT2 plays a crucial role in maintaining blood glucose homeostasis and is an important drug target for type 2 diabetes. Despite its significance, the mechanisms by which SGLT2 recognizes and releases substrates during its transport cycle remain largely unknown. Here, we present structures of human SGLT2 in complex with a glucose analogue in the occluded conformation at 2.6 Å resolution, revealing a detailed hydrogen bonding network at the substrate binding site that governs substrate recognition. Additionally, structures of SGLT2 in both the substrate-bound inward-facing conformation and the substrate-free inward-facing conformations illustrate the structural changes that occur during substrate release into cytosol. Our structural analysis, combined with mutagenesis results, identifies specific polar interactions that are essential for maintaining the outer and inner gates in their closed conformations.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"38 1\",\"pages\":\"7140\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62421-6\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62421-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

葡萄糖是生命和人体健康所必需的重要能量来源。钠-葡萄糖共转运蛋白2 (SGLT2)是一种钠-葡萄糖共转运蛋白,它利用钠的电化学梯度将肾滤液中的葡萄糖重新吸收回循环中。SGLT2在维持血糖稳态中起着至关重要的作用,是2型糖尿病的重要药物靶点。尽管具有重要意义,但SGLT2在其转运周期中识别和释放底物的机制在很大程度上仍然未知。在这里,我们以2.6 Å分辨率展示了人类SGLT2与葡萄糖类似物在封闭构象中的复合物结构,揭示了底物结合位点上控制底物识别的详细氢键网络。此外,在底物结合的内向构象和无底物的内向构象中,SGLT2的结构都说明了底物释放到细胞质中时发生的结构变化。我们的结构分析,结合诱变结果,确定了特定的极性相互作用,这对于维持外部和内部门的封闭构象是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanism of substrate recognition and release of human SGLT2.
Glucose is a vital energy source essential for life and human health. Sodium-glucose cotransporter 2 (SGLT2) is a sodium-glucose symporter that utilizes the electrochemical gradient of sodium to reabsorb glucose from kidney filtrate back into circulation. SGLT2 plays a crucial role in maintaining blood glucose homeostasis and is an important drug target for type 2 diabetes. Despite its significance, the mechanisms by which SGLT2 recognizes and releases substrates during its transport cycle remain largely unknown. Here, we present structures of human SGLT2 in complex with a glucose analogue in the occluded conformation at 2.6 Å resolution, revealing a detailed hydrogen bonding network at the substrate binding site that governs substrate recognition. Additionally, structures of SGLT2 in both the substrate-bound inward-facing conformation and the substrate-free inward-facing conformations illustrate the structural changes that occur during substrate release into cytosol. Our structural analysis, combined with mutagenesis results, identifies specific polar interactions that are essential for maintaining the outer and inner gates in their closed conformations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信