柔性金属有机框架薄膜,用于可逆的低压碳捕获和释放。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Sumea Klokic,Benedetta Marmiroli,Giovanni Birarda,Florian Lackner,Paul Holzer,Barbara Sartori,Behnaz Abbasgholi-Na,Simone Dal Zilio,Rupert Kargl,Karin Stana Kleinschek,Chiaramaria Stani,Lisa Vaccari,Heinz Amenitsch
{"title":"柔性金属有机框架薄膜,用于可逆的低压碳捕获和释放。","authors":"Sumea Klokic,Benedetta Marmiroli,Giovanni Birarda,Florian Lackner,Paul Holzer,Barbara Sartori,Behnaz Abbasgholi-Na,Simone Dal Zilio,Rupert Kargl,Karin Stana Kleinschek,Chiaramaria Stani,Lisa Vaccari,Heinz Amenitsch","doi":"10.1038/s41467-025-60027-6","DOIUrl":null,"url":null,"abstract":"Transitioning metal-organic frameworks (MOFs) from laboratory-scale to carbon dioxide (CO2) capture and storage applications (CCS) requires in-depth understanding of their adsorption properties and structural stability, especially for film assemblies. However, evaluating their performance is challenging, particularly under low or moderate CO2 pressure conditions, which are key for cost and performance efficiency. Herein, we explore the low-pressure CO2 uptake and release within flexible Zn-based MOF film structures with diverse ligand functionalities, employing quartz crystal microbalance, synchrotron radiation-based infrared spectromicroscopy and grazing incidence wide-angle X-ray scattering measurements. To investigate CO2 adsorption and its interaction with Zn-MOF pores, we exploited the framework's flexibility by triggering structural changes and thus variations of the pore-environment using two stimuli, temperature and light. Results show considerable promise for stimuli-induced on-demand CO2 capture and release at low pressures, demonstrating structural reversibility under near-ambient conditions and highlighting the potential of tailored MOF film structures in advancing green CCS-technologies.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"69 1","pages":"7135"},"PeriodicalIF":15.7000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible metal-organic framework films for reversible low-pressure carbon capture and release.\",\"authors\":\"Sumea Klokic,Benedetta Marmiroli,Giovanni Birarda,Florian Lackner,Paul Holzer,Barbara Sartori,Behnaz Abbasgholi-Na,Simone Dal Zilio,Rupert Kargl,Karin Stana Kleinschek,Chiaramaria Stani,Lisa Vaccari,Heinz Amenitsch\",\"doi\":\"10.1038/s41467-025-60027-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transitioning metal-organic frameworks (MOFs) from laboratory-scale to carbon dioxide (CO2) capture and storage applications (CCS) requires in-depth understanding of their adsorption properties and structural stability, especially for film assemblies. However, evaluating their performance is challenging, particularly under low or moderate CO2 pressure conditions, which are key for cost and performance efficiency. Herein, we explore the low-pressure CO2 uptake and release within flexible Zn-based MOF film structures with diverse ligand functionalities, employing quartz crystal microbalance, synchrotron radiation-based infrared spectromicroscopy and grazing incidence wide-angle X-ray scattering measurements. To investigate CO2 adsorption and its interaction with Zn-MOF pores, we exploited the framework's flexibility by triggering structural changes and thus variations of the pore-environment using two stimuli, temperature and light. Results show considerable promise for stimuli-induced on-demand CO2 capture and release at low pressures, demonstrating structural reversibility under near-ambient conditions and highlighting the potential of tailored MOF film structures in advancing green CCS-technologies.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"69 1\",\"pages\":\"7135\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-60027-6\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60027-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

将金属有机框架(mof)从实验室规模过渡到二氧化碳(CO2)捕获和储存应用(CCS)需要深入了解其吸附特性和结构稳定性,特别是薄膜组件。然而,评估其性能具有挑战性,特别是在低或中等二氧化碳压力条件下,这是成本和性能效率的关键。本文采用石英晶体微天平、基于同步辐射的红外光谱显微镜和掠入射广角x射线散射测量,探讨了具有不同配体功能的柔性锌基MOF薄膜结构中低压CO2的吸收和释放。为了研究二氧化碳的吸附及其与Zn-MOF孔的相互作用,我们利用两种刺激,温度和光,通过触发结构变化和孔环境的变化来利用框架的灵活性。结果显示,在低压下刺激诱导的按需二氧化碳捕获和释放具有相当大的前景,证明了近环境条件下的结构可逆性,并突出了定制MOF薄膜结构在推进绿色ccs技术方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible metal-organic framework films for reversible low-pressure carbon capture and release.
Transitioning metal-organic frameworks (MOFs) from laboratory-scale to carbon dioxide (CO2) capture and storage applications (CCS) requires in-depth understanding of their adsorption properties and structural stability, especially for film assemblies. However, evaluating their performance is challenging, particularly under low or moderate CO2 pressure conditions, which are key for cost and performance efficiency. Herein, we explore the low-pressure CO2 uptake and release within flexible Zn-based MOF film structures with diverse ligand functionalities, employing quartz crystal microbalance, synchrotron radiation-based infrared spectromicroscopy and grazing incidence wide-angle X-ray scattering measurements. To investigate CO2 adsorption and its interaction with Zn-MOF pores, we exploited the framework's flexibility by triggering structural changes and thus variations of the pore-environment using two stimuli, temperature and light. Results show considerable promise for stimuli-induced on-demand CO2 capture and release at low pressures, demonstrating structural reversibility under near-ambient conditions and highlighting the potential of tailored MOF film structures in advancing green CCS-technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信