{"title":"柔性金属有机框架薄膜,用于可逆的低压碳捕获和释放。","authors":"Sumea Klokic,Benedetta Marmiroli,Giovanni Birarda,Florian Lackner,Paul Holzer,Barbara Sartori,Behnaz Abbasgholi-Na,Simone Dal Zilio,Rupert Kargl,Karin Stana Kleinschek,Chiaramaria Stani,Lisa Vaccari,Heinz Amenitsch","doi":"10.1038/s41467-025-60027-6","DOIUrl":null,"url":null,"abstract":"Transitioning metal-organic frameworks (MOFs) from laboratory-scale to carbon dioxide (CO2) capture and storage applications (CCS) requires in-depth understanding of their adsorption properties and structural stability, especially for film assemblies. However, evaluating their performance is challenging, particularly under low or moderate CO2 pressure conditions, which are key for cost and performance efficiency. Herein, we explore the low-pressure CO2 uptake and release within flexible Zn-based MOF film structures with diverse ligand functionalities, employing quartz crystal microbalance, synchrotron radiation-based infrared spectromicroscopy and grazing incidence wide-angle X-ray scattering measurements. To investigate CO2 adsorption and its interaction with Zn-MOF pores, we exploited the framework's flexibility by triggering structural changes and thus variations of the pore-environment using two stimuli, temperature and light. Results show considerable promise for stimuli-induced on-demand CO2 capture and release at low pressures, demonstrating structural reversibility under near-ambient conditions and highlighting the potential of tailored MOF film structures in advancing green CCS-technologies.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"69 1","pages":"7135"},"PeriodicalIF":15.7000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible metal-organic framework films for reversible low-pressure carbon capture and release.\",\"authors\":\"Sumea Klokic,Benedetta Marmiroli,Giovanni Birarda,Florian Lackner,Paul Holzer,Barbara Sartori,Behnaz Abbasgholi-Na,Simone Dal Zilio,Rupert Kargl,Karin Stana Kleinschek,Chiaramaria Stani,Lisa Vaccari,Heinz Amenitsch\",\"doi\":\"10.1038/s41467-025-60027-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transitioning metal-organic frameworks (MOFs) from laboratory-scale to carbon dioxide (CO2) capture and storage applications (CCS) requires in-depth understanding of their adsorption properties and structural stability, especially for film assemblies. However, evaluating their performance is challenging, particularly under low or moderate CO2 pressure conditions, which are key for cost and performance efficiency. Herein, we explore the low-pressure CO2 uptake and release within flexible Zn-based MOF film structures with diverse ligand functionalities, employing quartz crystal microbalance, synchrotron radiation-based infrared spectromicroscopy and grazing incidence wide-angle X-ray scattering measurements. To investigate CO2 adsorption and its interaction with Zn-MOF pores, we exploited the framework's flexibility by triggering structural changes and thus variations of the pore-environment using two stimuli, temperature and light. Results show considerable promise for stimuli-induced on-demand CO2 capture and release at low pressures, demonstrating structural reversibility under near-ambient conditions and highlighting the potential of tailored MOF film structures in advancing green CCS-technologies.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"69 1\",\"pages\":\"7135\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-60027-6\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60027-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Flexible metal-organic framework films for reversible low-pressure carbon capture and release.
Transitioning metal-organic frameworks (MOFs) from laboratory-scale to carbon dioxide (CO2) capture and storage applications (CCS) requires in-depth understanding of their adsorption properties and structural stability, especially for film assemblies. However, evaluating their performance is challenging, particularly under low or moderate CO2 pressure conditions, which are key for cost and performance efficiency. Herein, we explore the low-pressure CO2 uptake and release within flexible Zn-based MOF film structures with diverse ligand functionalities, employing quartz crystal microbalance, synchrotron radiation-based infrared spectromicroscopy and grazing incidence wide-angle X-ray scattering measurements. To investigate CO2 adsorption and its interaction with Zn-MOF pores, we exploited the framework's flexibility by triggering structural changes and thus variations of the pore-environment using two stimuli, temperature and light. Results show considerable promise for stimuli-induced on-demand CO2 capture and release at low pressures, demonstrating structural reversibility under near-ambient conditions and highlighting the potential of tailored MOF film structures in advancing green CCS-technologies.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.