{"title":"毛牛坪碳酸盐岩反应驱动的岩浆结晶作用。","authors":"Yan Liu,Michael Anenburg","doi":"10.1038/s41467-025-62009-0","DOIUrl":null,"url":null,"abstract":"Igneous rocks form by solidification of magmas through cooling or volatile degassing following decompression. Expelled H2O is thought to trigger alteration around intrusions, leading to formation of metasomatic halos. This mechanism is often invoked to explain many magmatic-hydrothermal rock associations, some of them economically mineralised. Maoniuping in China is one of the four largest operating rare earth element (REE) mines globally, whose origin has been attributed to such hydrothermal exsolution. However, no direct evidence links hydrothermal fluids to the formation of Maoniuping and its associated REE mineralisation. Here we show that the REE deposit at Maoniuping formed magmatically from a carbonatitic brine-melt. Textural and chemical evidence reveals extensive interaction with its quartz syenite host, producing albitised fenites. Coupled metasomatism with these fenites led to silica contamination of the carbonatite melt, triggering crystallisation of refractory alkali-ferromagnesian silicates-an antiskarn. This solidified the melt due to removal of the fluxing elements Na and K. Thus, carbonatite melts can crystallise by element assimilation from their environments, precipitating alkali liquid fluxes into solid minerals. Temperature decrease and volatile degassing merely play a secondary role in this igneous rock-forming process. Solidification driven by coupled antiskarnisation and fenitisation affects both the mineral assemblage and ore fabric, and likely operated in most carbonatite-hosted REE deposits elsewhere.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"218 1","pages":"7159"},"PeriodicalIF":15.7000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reaction-driven magmatic crystallisation at the Maoniuping carbonatite.\",\"authors\":\"Yan Liu,Michael Anenburg\",\"doi\":\"10.1038/s41467-025-62009-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Igneous rocks form by solidification of magmas through cooling or volatile degassing following decompression. Expelled H2O is thought to trigger alteration around intrusions, leading to formation of metasomatic halos. This mechanism is often invoked to explain many magmatic-hydrothermal rock associations, some of them economically mineralised. Maoniuping in China is one of the four largest operating rare earth element (REE) mines globally, whose origin has been attributed to such hydrothermal exsolution. However, no direct evidence links hydrothermal fluids to the formation of Maoniuping and its associated REE mineralisation. Here we show that the REE deposit at Maoniuping formed magmatically from a carbonatitic brine-melt. Textural and chemical evidence reveals extensive interaction with its quartz syenite host, producing albitised fenites. Coupled metasomatism with these fenites led to silica contamination of the carbonatite melt, triggering crystallisation of refractory alkali-ferromagnesian silicates-an antiskarn. This solidified the melt due to removal of the fluxing elements Na and K. Thus, carbonatite melts can crystallise by element assimilation from their environments, precipitating alkali liquid fluxes into solid minerals. Temperature decrease and volatile degassing merely play a secondary role in this igneous rock-forming process. Solidification driven by coupled antiskarnisation and fenitisation affects both the mineral assemblage and ore fabric, and likely operated in most carbonatite-hosted REE deposits elsewhere.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"218 1\",\"pages\":\"7159\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62009-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62009-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Reaction-driven magmatic crystallisation at the Maoniuping carbonatite.
Igneous rocks form by solidification of magmas through cooling or volatile degassing following decompression. Expelled H2O is thought to trigger alteration around intrusions, leading to formation of metasomatic halos. This mechanism is often invoked to explain many magmatic-hydrothermal rock associations, some of them economically mineralised. Maoniuping in China is one of the four largest operating rare earth element (REE) mines globally, whose origin has been attributed to such hydrothermal exsolution. However, no direct evidence links hydrothermal fluids to the formation of Maoniuping and its associated REE mineralisation. Here we show that the REE deposit at Maoniuping formed magmatically from a carbonatitic brine-melt. Textural and chemical evidence reveals extensive interaction with its quartz syenite host, producing albitised fenites. Coupled metasomatism with these fenites led to silica contamination of the carbonatite melt, triggering crystallisation of refractory alkali-ferromagnesian silicates-an antiskarn. This solidified the melt due to removal of the fluxing elements Na and K. Thus, carbonatite melts can crystallise by element assimilation from their environments, precipitating alkali liquid fluxes into solid minerals. Temperature decrease and volatile degassing merely play a secondary role in this igneous rock-forming process. Solidification driven by coupled antiskarnisation and fenitisation affects both the mineral assemblage and ore fabric, and likely operated in most carbonatite-hosted REE deposits elsewhere.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.