共轭聚合物和烷烃聚合物老化过程中环境持久性自由基(EPFRs)的形成和电子转移。

IF 11.3
Journal of hazardous materials Pub Date : 2025-09-15 Epub Date: 2025-08-02 DOI:10.1016/j.jhazmat.2025.139418
Wenyi Huang, Runzhe Zhang, Guoqiang Jiang, Lidan Xie, Yi Liu, Xinyi Lu, Zhikui Zhou, Yanyan Xia, Jian Wang, Xiaoyun Fan
{"title":"共轭聚合物和烷烃聚合物老化过程中环境持久性自由基(EPFRs)的形成和电子转移。","authors":"Wenyi Huang, Runzhe Zhang, Guoqiang Jiang, Lidan Xie, Yi Liu, Xinyi Lu, Zhikui Zhou, Yanyan Xia, Jian Wang, Xiaoyun Fan","doi":"10.1016/j.jhazmat.2025.139418","DOIUrl":null,"url":null,"abstract":"<p><p>The electrons in environmental persistent free radicals (EPFRs) of aged microplastics (MPs) are highly mobile and reactive, readily interacting with oxygen and water to generate reactive oxygen species, possessing ecological hazards. However, it is still a big challenge to detect the formation of EPFRs and electrons in real-time by using the conventional technologies. Interestingly, the conductive atomic force microscopy (CAFM) can capture local electrical information on the sample surface with high resolution. Based on this, the present work provided an intuitive understanding of the dynamic evolution of surface currents in aged conjugated aromatic ring MPs and alkane chain MPs. The study found that photoexcitation induced electron transitions, promoting interactions between electrons and the chemical bonds of the polymers and ultimately generation of the persistent free radicals. Conjugated structures played a crucial role in the facilitating of electron transfer. And the aged PET MPs primarily generated carbon-centered and oxygen-centered free radicals, while the aged PS and PP MPs mainly produced oxygen-centered free radicals. Ultimately, the free electrons generated by the aged MPs enhanced their removal capacity for cationic dyes. This study provides a novel testing method and perspective to deeply investigate the formation of electrons on the surfaces of aged MPs.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"496 ","pages":"139418"},"PeriodicalIF":11.3000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of environmentally persistent free radicals (EPFRs) and electron transfer in conjugated polymers and alkane polymers during aging.\",\"authors\":\"Wenyi Huang, Runzhe Zhang, Guoqiang Jiang, Lidan Xie, Yi Liu, Xinyi Lu, Zhikui Zhou, Yanyan Xia, Jian Wang, Xiaoyun Fan\",\"doi\":\"10.1016/j.jhazmat.2025.139418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The electrons in environmental persistent free radicals (EPFRs) of aged microplastics (MPs) are highly mobile and reactive, readily interacting with oxygen and water to generate reactive oxygen species, possessing ecological hazards. However, it is still a big challenge to detect the formation of EPFRs and electrons in real-time by using the conventional technologies. Interestingly, the conductive atomic force microscopy (CAFM) can capture local electrical information on the sample surface with high resolution. Based on this, the present work provided an intuitive understanding of the dynamic evolution of surface currents in aged conjugated aromatic ring MPs and alkane chain MPs. The study found that photoexcitation induced electron transitions, promoting interactions between electrons and the chemical bonds of the polymers and ultimately generation of the persistent free radicals. Conjugated structures played a crucial role in the facilitating of electron transfer. And the aged PET MPs primarily generated carbon-centered and oxygen-centered free radicals, while the aged PS and PP MPs mainly produced oxygen-centered free radicals. Ultimately, the free electrons generated by the aged MPs enhanced their removal capacity for cationic dyes. This study provides a novel testing method and perspective to deeply investigate the formation of electrons on the surfaces of aged MPs.</p>\",\"PeriodicalId\":94082,\"journal\":{\"name\":\"Journal of hazardous materials\",\"volume\":\"496 \",\"pages\":\"139418\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2025.139418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.139418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

老化微塑料(MPs)的环境持久性自由基(EPFRs)中的电子具有很强的流动性和活性,容易与氧和水相互作用产生活性氧,具有生态危害。然而,利用传统技术实时检测EPFRs和电子的形成仍然是一个很大的挑战。有趣的是,导电原子力显微镜(CAFM)可以以高分辨率捕获样品表面的局部电信息。在此基础上,本工作直观地了解了老化共轭芳环MPs和烷烃链MPs表面电流的动态演变。研究发现,光激发诱导了电子跃迁,促进了电子与聚合物化学键之间的相互作用,最终产生了持久性自由基。共轭结构在促进电子转移方面起着至关重要的作用。老化的PET MPs主要产生碳中心自由基和氧中心自由基,而老化的PS和PP MPs主要产生氧中心自由基。最终,老化MPs产生的自由电子增强了它们对阳离子染料的去除能力。本研究为深入研究老化MPs表面电子的形成提供了一种新的测试方法和视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formation of environmentally persistent free radicals (EPFRs) and electron transfer in conjugated polymers and alkane polymers during aging.

The electrons in environmental persistent free radicals (EPFRs) of aged microplastics (MPs) are highly mobile and reactive, readily interacting with oxygen and water to generate reactive oxygen species, possessing ecological hazards. However, it is still a big challenge to detect the formation of EPFRs and electrons in real-time by using the conventional technologies. Interestingly, the conductive atomic force microscopy (CAFM) can capture local electrical information on the sample surface with high resolution. Based on this, the present work provided an intuitive understanding of the dynamic evolution of surface currents in aged conjugated aromatic ring MPs and alkane chain MPs. The study found that photoexcitation induced electron transitions, promoting interactions between electrons and the chemical bonds of the polymers and ultimately generation of the persistent free radicals. Conjugated structures played a crucial role in the facilitating of electron transfer. And the aged PET MPs primarily generated carbon-centered and oxygen-centered free radicals, while the aged PS and PP MPs mainly produced oxygen-centered free radicals. Ultimately, the free electrons generated by the aged MPs enhanced their removal capacity for cationic dyes. This study provides a novel testing method and perspective to deeply investigate the formation of electrons on the surfaces of aged MPs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信