低频磁场暴露与神经退行性疾病:动物研究的系统回顾。

IF 1.5 4区 生物学 Q3 BIOLOGY
Rianne Stam
{"title":"低频磁场暴露与神经退行性疾病:动物研究的系统回顾。","authors":"Rianne Stam","doi":"10.1080/15368378.2025.2540435","DOIUrl":null,"url":null,"abstract":"<p><p>Epidemiological studies have found an association between occupational exposure to low frequency magnetic fields and the occurrence of motor neuron disease and Alzheimer's disease. No association has been found for Parkinson's disease and the evidence for multiple sclerosis is insufficient. Animal models studying the effects of low frequency magnetic fields on neurodegenerative disease induction or progression could provide more evidence on causation and the underlying mechanisms. A systematic search and review was conducted of peer-reviewed research articles involving animal experiments on the effects of low frequency magnetic field exposure on behavioural and neuroanatomical outcomes relevant for neurodegenerative diseases in humans. Firstly, experimental studies in <i>naive animals</i> do not support a causal relationship between exposure to low frequency magnetic fields and the induction of neuropathology relevant for Alzheimer's disease, but the number of studies relevant for motor neuron disease, multiple sclerosis and Parkinson's disease is too limited to draw conclusions. Secondly, experimental studies in <i>existing animal models for neurodegenerative disease</i> support a therapeutic (beneficial) effect of low frequency magnetic field treatment on behavioural and neuroanatomical abnormalities relevant for dementia (including Alzheimer's disease), multiple sclerosis and Parkinson's disease and no effect on disease progression in models relevant for motor neuron disease.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"1-15"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low frequency magnetic field exposure and neurodegenerative disease: systematic review of animal studies.\",\"authors\":\"Rianne Stam\",\"doi\":\"10.1080/15368378.2025.2540435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epidemiological studies have found an association between occupational exposure to low frequency magnetic fields and the occurrence of motor neuron disease and Alzheimer's disease. No association has been found for Parkinson's disease and the evidence for multiple sclerosis is insufficient. Animal models studying the effects of low frequency magnetic fields on neurodegenerative disease induction or progression could provide more evidence on causation and the underlying mechanisms. A systematic search and review was conducted of peer-reviewed research articles involving animal experiments on the effects of low frequency magnetic field exposure on behavioural and neuroanatomical outcomes relevant for neurodegenerative diseases in humans. Firstly, experimental studies in <i>naive animals</i> do not support a causal relationship between exposure to low frequency magnetic fields and the induction of neuropathology relevant for Alzheimer's disease, but the number of studies relevant for motor neuron disease, multiple sclerosis and Parkinson's disease is too limited to draw conclusions. Secondly, experimental studies in <i>existing animal models for neurodegenerative disease</i> support a therapeutic (beneficial) effect of low frequency magnetic field treatment on behavioural and neuroanatomical abnormalities relevant for dementia (including Alzheimer's disease), multiple sclerosis and Parkinson's disease and no effect on disease progression in models relevant for motor neuron disease.</p>\",\"PeriodicalId\":50544,\"journal\":{\"name\":\"Electromagnetic Biology and Medicine\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electromagnetic Biology and Medicine\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2025.2540435\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2025.2540435","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

流行病学研究发现,职业暴露于低频磁场与运动神经元疾病和阿尔茨海默病的发生之间存在关联。没有发现与帕金森病有关,多发性硬化症的证据也不足。研究低频磁场对神经退行性疾病诱导或进展影响的动物模型可以为因果关系和潜在机制提供更多证据。对涉及动物实验的同行评议研究文章进行了系统的搜索和审查,这些研究涉及低频磁场暴露对与人类神经退行性疾病相关的行为和神经解剖学结果的影响。首先,幼稚动物的实验研究不支持低频磁场暴露与阿尔茨海默病相关神经病理诱导之间的因果关系,但与运动神经元疾病、多发性硬化症和帕金森病相关的研究数量太少,无法得出结论。其次,现有神经退行性疾病动物模型的实验研究支持低频磁场治疗对痴呆症(包括阿尔茨海默病)、多发性硬化症和帕金森病相关的行为和神经解剖学异常有治疗(有益)作用,而对运动神经元疾病相关模型的疾病进展没有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low frequency magnetic field exposure and neurodegenerative disease: systematic review of animal studies.

Epidemiological studies have found an association between occupational exposure to low frequency magnetic fields and the occurrence of motor neuron disease and Alzheimer's disease. No association has been found for Parkinson's disease and the evidence for multiple sclerosis is insufficient. Animal models studying the effects of low frequency magnetic fields on neurodegenerative disease induction or progression could provide more evidence on causation and the underlying mechanisms. A systematic search and review was conducted of peer-reviewed research articles involving animal experiments on the effects of low frequency magnetic field exposure on behavioural and neuroanatomical outcomes relevant for neurodegenerative diseases in humans. Firstly, experimental studies in naive animals do not support a causal relationship between exposure to low frequency magnetic fields and the induction of neuropathology relevant for Alzheimer's disease, but the number of studies relevant for motor neuron disease, multiple sclerosis and Parkinson's disease is too limited to draw conclusions. Secondly, experimental studies in existing animal models for neurodegenerative disease support a therapeutic (beneficial) effect of low frequency magnetic field treatment on behavioural and neuroanatomical abnormalities relevant for dementia (including Alzheimer's disease), multiple sclerosis and Parkinson's disease and no effect on disease progression in models relevant for motor neuron disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
11.80%
发文量
33
审稿时长
>12 weeks
期刊介绍: Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信