人工智能在面部骨质疏松风险预测中的应用:临床意义与展望。

Q4 Medicine
K S Oisieva, R A Rozov, V N Trezubov, M Y Kabanov
{"title":"人工智能在面部骨质疏松风险预测中的应用:临床意义与展望。","authors":"K S Oisieva, R A Rozov, V N Trezubov, M Y Kabanov","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoporosis of the jawbones is a significant concern in dental practice, particularly for implant treatment planning. This review summarizes current diagnostic approaches with a focus on the use of artificial intelligence (AI) algorithms, including convolutional neural networks, for analyzing panoramic radiographs and cone-beam computed tomography. The findings demonstrate that AI models achieve high diagnostic accuracy in the automated classification of radiographic images, comparable to dual-energy X-ray absorptiometry. AI reduces subjectivity in image interpretation, although further standardization, dataset expansion, and development of explainable models are necessary. The review highlights comparative metrics of various neural network architectures and their potential for integration into clinical workflows.</p>","PeriodicalId":35293,"journal":{"name":"Advances in gerontology = Uspekhi gerontologii / Rossiiskaia akademiia nauk, Gerontologicheskoe obshchestvo","volume":"38 2","pages":"171-180"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Artificial intelligence in predicting the risk of facial bone osteoporosis: clinical significance and prospects.]\",\"authors\":\"K S Oisieva, R A Rozov, V N Trezubov, M Y Kabanov\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoporosis of the jawbones is a significant concern in dental practice, particularly for implant treatment planning. This review summarizes current diagnostic approaches with a focus on the use of artificial intelligence (AI) algorithms, including convolutional neural networks, for analyzing panoramic radiographs and cone-beam computed tomography. The findings demonstrate that AI models achieve high diagnostic accuracy in the automated classification of radiographic images, comparable to dual-energy X-ray absorptiometry. AI reduces subjectivity in image interpretation, although further standardization, dataset expansion, and development of explainable models are necessary. The review highlights comparative metrics of various neural network architectures and their potential for integration into clinical workflows.</p>\",\"PeriodicalId\":35293,\"journal\":{\"name\":\"Advances in gerontology = Uspekhi gerontologii / Rossiiskaia akademiia nauk, Gerontologicheskoe obshchestvo\",\"volume\":\"38 2\",\"pages\":\"171-180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in gerontology = Uspekhi gerontologii / Rossiiskaia akademiia nauk, Gerontologicheskoe obshchestvo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in gerontology = Uspekhi gerontologii / Rossiiskaia akademiia nauk, Gerontologicheskoe obshchestvo","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

颌骨骨质疏松症是牙科实践中一个重要的问题,特别是种植治疗计划。本文总结了目前的诊断方法,重点是使用人工智能(AI)算法,包括卷积神经网络,来分析全景x线照片和锥束计算机断层扫描。研究结果表明,人工智能模型在放射图像的自动分类中实现了很高的诊断准确性,可与双能x射线吸收仪相媲美。人工智能减少了图像解释的主观性,尽管进一步的标准化、数据集扩展和可解释模型的开发是必要的。这篇综述强调了各种神经网络架构的比较指标及其整合到临床工作流程中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Artificial intelligence in predicting the risk of facial bone osteoporosis: clinical significance and prospects.]

Osteoporosis of the jawbones is a significant concern in dental practice, particularly for implant treatment planning. This review summarizes current diagnostic approaches with a focus on the use of artificial intelligence (AI) algorithms, including convolutional neural networks, for analyzing panoramic radiographs and cone-beam computed tomography. The findings demonstrate that AI models achieve high diagnostic accuracy in the automated classification of radiographic images, comparable to dual-energy X-ray absorptiometry. AI reduces subjectivity in image interpretation, although further standardization, dataset expansion, and development of explainable models are necessary. The review highlights comparative metrics of various neural network architectures and their potential for integration into clinical workflows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
131
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信