{"title":"[噬菌体治疗对抗抗菌素耐药性的必要性]。","authors":"Kotaro Kiga","doi":"10.1248/yakushi.24-00190-4","DOIUrl":null,"url":null,"abstract":"<p><p>The escalating crisis of antimicrobial resistance poses a grave threat to global health and medicine in the 21st century. Phage therapy has emerged as a promising alternative to conventional antibiotics in addressing this urgent issue. Phages, unlike traditional antibiotics, leave the healthy microbiome largely undisturbed by selectively targeting and infecting their bacterial host. Additionally, phages can be readily genetically engineered to enhance their efficacy against specific bacterial strains. While some countries are slowly developing new regulations and implementing phage therapy in the clinic, widespread societal adoption remains limited. Phage therapy has the potential to revolutionize infection treatment; however, the unique biological properties of phages necessitate a multifaceted approach for the societal implementation of phage therapy. Recent research has focused on genetically engineering phages to enhance their capabilities or confer novel functions. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems have facilitated the development of phages that target specific genes. Furthermore, the emergence of tRNA-carrying phages and phages that inhibit bacterial defense systems represents new classes of genetically engineered phages with enhanced bactericidal properties.</p>","PeriodicalId":23810,"journal":{"name":"Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan","volume":"145 8","pages":"679-688"},"PeriodicalIF":0.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[The Need for Phage Therapy in Combating Antimicrobial Resistance].\",\"authors\":\"Kotaro Kiga\",\"doi\":\"10.1248/yakushi.24-00190-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The escalating crisis of antimicrobial resistance poses a grave threat to global health and medicine in the 21st century. Phage therapy has emerged as a promising alternative to conventional antibiotics in addressing this urgent issue. Phages, unlike traditional antibiotics, leave the healthy microbiome largely undisturbed by selectively targeting and infecting their bacterial host. Additionally, phages can be readily genetically engineered to enhance their efficacy against specific bacterial strains. While some countries are slowly developing new regulations and implementing phage therapy in the clinic, widespread societal adoption remains limited. Phage therapy has the potential to revolutionize infection treatment; however, the unique biological properties of phages necessitate a multifaceted approach for the societal implementation of phage therapy. Recent research has focused on genetically engineering phages to enhance their capabilities or confer novel functions. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems have facilitated the development of phages that target specific genes. Furthermore, the emergence of tRNA-carrying phages and phages that inhibit bacterial defense systems represents new classes of genetically engineered phages with enhanced bactericidal properties.</p>\",\"PeriodicalId\":23810,\"journal\":{\"name\":\"Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan\",\"volume\":\"145 8\",\"pages\":\"679-688\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1248/yakushi.24-00190-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/yakushi.24-00190-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
[The Need for Phage Therapy in Combating Antimicrobial Resistance].
The escalating crisis of antimicrobial resistance poses a grave threat to global health and medicine in the 21st century. Phage therapy has emerged as a promising alternative to conventional antibiotics in addressing this urgent issue. Phages, unlike traditional antibiotics, leave the healthy microbiome largely undisturbed by selectively targeting and infecting their bacterial host. Additionally, phages can be readily genetically engineered to enhance their efficacy against specific bacterial strains. While some countries are slowly developing new regulations and implementing phage therapy in the clinic, widespread societal adoption remains limited. Phage therapy has the potential to revolutionize infection treatment; however, the unique biological properties of phages necessitate a multifaceted approach for the societal implementation of phage therapy. Recent research has focused on genetically engineering phages to enhance their capabilities or confer novel functions. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems have facilitated the development of phages that target specific genes. Furthermore, the emergence of tRNA-carrying phages and phages that inhibit bacterial defense systems represents new classes of genetically engineered phages with enhanced bactericidal properties.