Ahmed Mohammed Alghamdi, M Usman Ashraf, Adel A Bahaddad, Khalid Ali Almarhabi, Waleed A Al Shehri, Amil Daraz
{"title":"基于对比学习的跨主体脑电信号情感识别。","authors":"Ahmed Mohammed Alghamdi, M Usman Ashraf, Adel A Bahaddad, Khalid Ali Almarhabi, Waleed A Al Shehri, Amil Daraz","doi":"10.1038/s41598-025-13289-5","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where EEG signals are the cause of reliable and objective applications. Despite these advancements, significant challenges persist, including individual differences in EEG signals across subjects during emotion recognition. To cope this challenge, current study introduces a cutting-edge cross subject contrastive learning (CSCL) scheme for EEG signals representation of brain region. The proposed scheme addresses the generalisation across subjects directly, which is a primary challenge in EEG signals-based emotions recognition. The proposed CSCL scheme captures the complex patterns effectively by employing emotions and stimulus contrastive losses within hyperbolic space. CSCL is designed primarily to learn representations that can effectively distinguish signals originating from different brain regions. Further, we evaluate the significance of our proposed CSCL scheme on five different datasets, including SEED, CEED, FACED and MPED, and obtain 97.70%, 96.26%, 65.98%, and 51.30% respectively. The experimental results show that our proposed CSCL scheme demonstrates strong effectiveness while addressing the challenges related to cross subject variability and label noise in the EEG-based emotion recognition system.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"28295"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12319081/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cross-subject EEG signals-based emotion recognition using contrastive learning.\",\"authors\":\"Ahmed Mohammed Alghamdi, M Usman Ashraf, Adel A Bahaddad, Khalid Ali Almarhabi, Waleed A Al Shehri, Amil Daraz\",\"doi\":\"10.1038/s41598-025-13289-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where EEG signals are the cause of reliable and objective applications. Despite these advancements, significant challenges persist, including individual differences in EEG signals across subjects during emotion recognition. To cope this challenge, current study introduces a cutting-edge cross subject contrastive learning (CSCL) scheme for EEG signals representation of brain region. The proposed scheme addresses the generalisation across subjects directly, which is a primary challenge in EEG signals-based emotions recognition. The proposed CSCL scheme captures the complex patterns effectively by employing emotions and stimulus contrastive losses within hyperbolic space. CSCL is designed primarily to learn representations that can effectively distinguish signals originating from different brain regions. Further, we evaluate the significance of our proposed CSCL scheme on five different datasets, including SEED, CEED, FACED and MPED, and obtain 97.70%, 96.26%, 65.98%, and 51.30% respectively. The experimental results show that our proposed CSCL scheme demonstrates strong effectiveness while addressing the challenges related to cross subject variability and label noise in the EEG-based emotion recognition system.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"28295\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12319081/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-13289-5\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-13289-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Cross-subject EEG signals-based emotion recognition using contrastive learning.
Electroencephalography (EEG) signals based emotion brain computer interface (BCI) is a significant field in the domain of affective computing where EEG signals are the cause of reliable and objective applications. Despite these advancements, significant challenges persist, including individual differences in EEG signals across subjects during emotion recognition. To cope this challenge, current study introduces a cutting-edge cross subject contrastive learning (CSCL) scheme for EEG signals representation of brain region. The proposed scheme addresses the generalisation across subjects directly, which is a primary challenge in EEG signals-based emotions recognition. The proposed CSCL scheme captures the complex patterns effectively by employing emotions and stimulus contrastive losses within hyperbolic space. CSCL is designed primarily to learn representations that can effectively distinguish signals originating from different brain regions. Further, we evaluate the significance of our proposed CSCL scheme on five different datasets, including SEED, CEED, FACED and MPED, and obtain 97.70%, 96.26%, 65.98%, and 51.30% respectively. The experimental results show that our proposed CSCL scheme demonstrates strong effectiveness while addressing the challenges related to cross subject variability and label noise in the EEG-based emotion recognition system.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.