{"title":"时间基因表达谱揭示了藏红花柱头发育过程中类麻瓜素生物合成基因的阶段性调控。","authors":"Khushboo Gupta, Mohan Singh Rajkumar, Vaishali Singh, Pooja Rani, Aijaz A Wani, Ashwani Pareek, Rohini Garg, Mukesh Jain","doi":"10.1007/s12298-025-01621-2","DOIUrl":null,"url":null,"abstract":"<p><p>Saffron (<i>Crocus sativus</i> L.) is a sterile triploid medicinal plant and is the world's most expensive cultivated herb. Its dried red stigmas accumulate important carotenoids, which produce apocarotenoids after oxidative cleavage. Saffron produces important apocarotenoids, crocin, picrocrocin and safranal, that provide color, flavor and aroma to it. To understand the expression pattern and stage specificity of apocarotenoid biosynthesis genes, we performed RNA sequencing at six different stages of stigma development (yellow, orange, red, two days before anthesis, at the day of anthesis and two days after anthesis) using Illumina platform. Differential expression analysis revealed preferential/specific expression of many genes at the different stages of stigma development. Functional annotation identified many genes encoding enzymes involved in different steps of apocarotenoid biosynthesis pathways expressed preferentially at red and later stages of stigma development. In addition, gene ontology enrichment analysis revealed several genes involved in primary/secondary metabolic processes and reproductive development pathways, exhibiting higher transcript abundance at the later stages of stigma development. Overall, the data and results presented in this study can serve as a rich resource for understanding the apocarotenoid biosynthesis in <i>C. sativus</i> during stigma development.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01621-2.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 6","pages":"863-876"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314296/pdf/","citationCount":"0","resultStr":"{\"title\":\"Temporal gene expression profiling suggests stage-specific regulation of apocarotenoid biosynthesis genes during stigma development in <i>Crocus sativus</i> L.\",\"authors\":\"Khushboo Gupta, Mohan Singh Rajkumar, Vaishali Singh, Pooja Rani, Aijaz A Wani, Ashwani Pareek, Rohini Garg, Mukesh Jain\",\"doi\":\"10.1007/s12298-025-01621-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Saffron (<i>Crocus sativus</i> L.) is a sterile triploid medicinal plant and is the world's most expensive cultivated herb. Its dried red stigmas accumulate important carotenoids, which produce apocarotenoids after oxidative cleavage. Saffron produces important apocarotenoids, crocin, picrocrocin and safranal, that provide color, flavor and aroma to it. To understand the expression pattern and stage specificity of apocarotenoid biosynthesis genes, we performed RNA sequencing at six different stages of stigma development (yellow, orange, red, two days before anthesis, at the day of anthesis and two days after anthesis) using Illumina platform. Differential expression analysis revealed preferential/specific expression of many genes at the different stages of stigma development. Functional annotation identified many genes encoding enzymes involved in different steps of apocarotenoid biosynthesis pathways expressed preferentially at red and later stages of stigma development. In addition, gene ontology enrichment analysis revealed several genes involved in primary/secondary metabolic processes and reproductive development pathways, exhibiting higher transcript abundance at the later stages of stigma development. Overall, the data and results presented in this study can serve as a rich resource for understanding the apocarotenoid biosynthesis in <i>C. sativus</i> during stigma development.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01621-2.</p>\",\"PeriodicalId\":20148,\"journal\":{\"name\":\"Physiology and Molecular Biology of Plants\",\"volume\":\"31 6\",\"pages\":\"863-876\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314296/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology and Molecular Biology of Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12298-025-01621-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-025-01621-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Temporal gene expression profiling suggests stage-specific regulation of apocarotenoid biosynthesis genes during stigma development in Crocus sativus L.
Saffron (Crocus sativus L.) is a sterile triploid medicinal plant and is the world's most expensive cultivated herb. Its dried red stigmas accumulate important carotenoids, which produce apocarotenoids after oxidative cleavage. Saffron produces important apocarotenoids, crocin, picrocrocin and safranal, that provide color, flavor and aroma to it. To understand the expression pattern and stage specificity of apocarotenoid biosynthesis genes, we performed RNA sequencing at six different stages of stigma development (yellow, orange, red, two days before anthesis, at the day of anthesis and two days after anthesis) using Illumina platform. Differential expression analysis revealed preferential/specific expression of many genes at the different stages of stigma development. Functional annotation identified many genes encoding enzymes involved in different steps of apocarotenoid biosynthesis pathways expressed preferentially at red and later stages of stigma development. In addition, gene ontology enrichment analysis revealed several genes involved in primary/secondary metabolic processes and reproductive development pathways, exhibiting higher transcript abundance at the later stages of stigma development. Overall, the data and results presented in this study can serve as a rich resource for understanding the apocarotenoid biosynthesis in C. sativus during stigma development.
Supplementary information: The online version contains supplementary material available at 10.1007/s12298-025-01621-2.
期刊介绍:
Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.