{"title":"硫辛酸和24-表油菜素内酯通过调节抗氧化和乙二醛酶系统协同合作,提高玉米幼苗对渗透胁迫的恢复能力。","authors":"Asiye Sezgin Muslu, Sebahat Duygu Gümrükçü Şimşek, Rabiye Terzi","doi":"10.1007/s12298-025-01620-3","DOIUrl":null,"url":null,"abstract":"<p><p>Lipoic acid (LA) and 24-epibrassinolide (EBL) are versatile compounds that enhance plant stress tolerance by modulating cellular metabolism, maintaining ion balance, and boosting antioxidant enzyme activity. However, the combined effects of these two compounds in mitigating the adverse impacts of osmotic stress remain unclear. We investigated the effects of exogenous LA (12 µM), EBL (0.1 mg L<sup>-1</sup>), and their combination (LA + EBL) on stress parameters (plant dry weight, total chlorophyll, leaf relative water content (LRWC)), oxidative stress markers (thiobarbituric acid-reactive substances, hydrogen peroxide, superoxide, and methylglyoxal), activities of antioxidant and glyoxalase system enzymes and the relative expression levels of the genes coding the enzymes related to these systems in maize seedlings under osmotic stress. The results indicated that exogenous application of LA and EBL combination reduced the level of oxidative stress markers and enhanced the stress parameters, ascorbate and glutathione levels, activities of enzymes acting antioxidant and glyoxalase systems, and their gene expression. The combination of LA and EBL was also found to stimulate gene expression levels related to the photosynthetic process and hormone biosynthesis. The findings of the current study highlighted the synergistic effects of combined LA and EBL in enhancing osmotic stress tolerance in maize seedlings. Overall, the combined application of LA and EBL found to have stronger effect than their individual applications in mitigating osmotic stress. The combined use of these compounds offers promising potential for developing drought-tolerant crops in the agricultural sector.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01620-3.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 6","pages":"993-1010"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314304/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lipoic acid and 24-epibrassinolide collaborate synergistically to boost maize seedlings resilience to osmotic stress via modulating antioxidant and glyoxalase systems.\",\"authors\":\"Asiye Sezgin Muslu, Sebahat Duygu Gümrükçü Şimşek, Rabiye Terzi\",\"doi\":\"10.1007/s12298-025-01620-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lipoic acid (LA) and 24-epibrassinolide (EBL) are versatile compounds that enhance plant stress tolerance by modulating cellular metabolism, maintaining ion balance, and boosting antioxidant enzyme activity. However, the combined effects of these two compounds in mitigating the adverse impacts of osmotic stress remain unclear. We investigated the effects of exogenous LA (12 µM), EBL (0.1 mg L<sup>-1</sup>), and their combination (LA + EBL) on stress parameters (plant dry weight, total chlorophyll, leaf relative water content (LRWC)), oxidative stress markers (thiobarbituric acid-reactive substances, hydrogen peroxide, superoxide, and methylglyoxal), activities of antioxidant and glyoxalase system enzymes and the relative expression levels of the genes coding the enzymes related to these systems in maize seedlings under osmotic stress. The results indicated that exogenous application of LA and EBL combination reduced the level of oxidative stress markers and enhanced the stress parameters, ascorbate and glutathione levels, activities of enzymes acting antioxidant and glyoxalase systems, and their gene expression. The combination of LA and EBL was also found to stimulate gene expression levels related to the photosynthetic process and hormone biosynthesis. The findings of the current study highlighted the synergistic effects of combined LA and EBL in enhancing osmotic stress tolerance in maize seedlings. Overall, the combined application of LA and EBL found to have stronger effect than their individual applications in mitigating osmotic stress. The combined use of these compounds offers promising potential for developing drought-tolerant crops in the agricultural sector.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01620-3.</p>\",\"PeriodicalId\":20148,\"journal\":{\"name\":\"Physiology and Molecular Biology of Plants\",\"volume\":\"31 6\",\"pages\":\"993-1010\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314304/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology and Molecular Biology of Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12298-025-01620-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-025-01620-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Lipoic acid and 24-epibrassinolide collaborate synergistically to boost maize seedlings resilience to osmotic stress via modulating antioxidant and glyoxalase systems.
Lipoic acid (LA) and 24-epibrassinolide (EBL) are versatile compounds that enhance plant stress tolerance by modulating cellular metabolism, maintaining ion balance, and boosting antioxidant enzyme activity. However, the combined effects of these two compounds in mitigating the adverse impacts of osmotic stress remain unclear. We investigated the effects of exogenous LA (12 µM), EBL (0.1 mg L-1), and their combination (LA + EBL) on stress parameters (plant dry weight, total chlorophyll, leaf relative water content (LRWC)), oxidative stress markers (thiobarbituric acid-reactive substances, hydrogen peroxide, superoxide, and methylglyoxal), activities of antioxidant and glyoxalase system enzymes and the relative expression levels of the genes coding the enzymes related to these systems in maize seedlings under osmotic stress. The results indicated that exogenous application of LA and EBL combination reduced the level of oxidative stress markers and enhanced the stress parameters, ascorbate and glutathione levels, activities of enzymes acting antioxidant and glyoxalase systems, and their gene expression. The combination of LA and EBL was also found to stimulate gene expression levels related to the photosynthetic process and hormone biosynthesis. The findings of the current study highlighted the synergistic effects of combined LA and EBL in enhancing osmotic stress tolerance in maize seedlings. Overall, the combined application of LA and EBL found to have stronger effect than their individual applications in mitigating osmotic stress. The combined use of these compounds offers promising potential for developing drought-tolerant crops in the agricultural sector.
Supplementary information: The online version contains supplementary material available at 10.1007/s12298-025-01620-3.
期刊介绍:
Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.