面包小麦铝耐受性的内在和诱导代谢特征:比较代谢组学方法。

IF 3.3 3区 生物学 Q1 PLANT SCIENCES
Şükrü Serter Çatav, Emine Sonay Elgin, Köksal Küçükakyüz, Çağdaş Dağ
{"title":"面包小麦铝耐受性的内在和诱导代谢特征:比较代谢组学方法。","authors":"Şükrü Serter Çatav, Emine Sonay Elgin, Köksal Küçükakyüz, Çağdaş Dağ","doi":"10.1007/s12298-025-01622-1","DOIUrl":null,"url":null,"abstract":"<p><p>Aluminum (Al) toxicity is a major impediment to plant growth and yield in low pH soils. Exclusion and/or vacuolar sequestration of Al with organic acids and phenolic compounds is the primary tolerance mechanism utilized by plants to mitigate Al toxicity. However, little is known about the intrinsic and Al-induced metabolic differences underlying intraspecific variability in tolerance to Al toxicity. To fill this gap, we determined root metabolic profiles of Al-sensitive (Golia-99) and Al-tolerant (Demir-2000) bread wheat cultivars treated with 0, 10, and 30 µM AlCl<sub>3</sub>·6H<sub>2</sub>O using nuclear magnetic resonance (NMR) spectroscopy. Our results showed that there were marked differences in the concentrations of numerous metabolites between Golia-99 and Demir-2000 roots under both control and Al stress conditions. In this regard, a number of metabolites from the amino acid and TCA groups, such as citrate, cysteine, glutamate, isocitrate, phenylalanine, and succinate, were found to be intrinsically higher levels in Demir-2000 than in Golia-99. In addition, Al toxicity led to the accumulation of asparagine, glutamine, putrescine, pyroglutamate, and soluble sugars in Demir-2000 roots. Furthermore, Al treatments significantly altered many metabolic pathways in both cultivar-specific and cultivar-independent manners. The major pathways contributing to the difference in Al toxicity tolerance between Demir-2000 and Golia-99 were arginine biosynthesis, glycolysis/gluconeogenesis, and the metabolisms of cysteine and methionine, glutathione, glycine, serine and threonine, pyruvate, sulfur, and tyrosine. Overall, our results suggest that the distinct patterns of Al-induced overrepresentation in amino acid, carbohydrate, and energy metabolism play an important role in explaining the differential tolerance capacities of Demir-2000 and Golia-99 to Al toxicity. The outcomes of this study may provide valuable insights into improving Al tolerance in wheat through breeding and genetic engineering.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01622-1.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 6","pages":"1011-1026"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314282/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intrinsic and induced metabolic signatures underpin aluminum tolerance in bread wheat: a comparative metabolomics approach.\",\"authors\":\"Şükrü Serter Çatav, Emine Sonay Elgin, Köksal Küçükakyüz, Çağdaş Dağ\",\"doi\":\"10.1007/s12298-025-01622-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aluminum (Al) toxicity is a major impediment to plant growth and yield in low pH soils. Exclusion and/or vacuolar sequestration of Al with organic acids and phenolic compounds is the primary tolerance mechanism utilized by plants to mitigate Al toxicity. However, little is known about the intrinsic and Al-induced metabolic differences underlying intraspecific variability in tolerance to Al toxicity. To fill this gap, we determined root metabolic profiles of Al-sensitive (Golia-99) and Al-tolerant (Demir-2000) bread wheat cultivars treated with 0, 10, and 30 µM AlCl<sub>3</sub>·6H<sub>2</sub>O using nuclear magnetic resonance (NMR) spectroscopy. Our results showed that there were marked differences in the concentrations of numerous metabolites between Golia-99 and Demir-2000 roots under both control and Al stress conditions. In this regard, a number of metabolites from the amino acid and TCA groups, such as citrate, cysteine, glutamate, isocitrate, phenylalanine, and succinate, were found to be intrinsically higher levels in Demir-2000 than in Golia-99. In addition, Al toxicity led to the accumulation of asparagine, glutamine, putrescine, pyroglutamate, and soluble sugars in Demir-2000 roots. Furthermore, Al treatments significantly altered many metabolic pathways in both cultivar-specific and cultivar-independent manners. The major pathways contributing to the difference in Al toxicity tolerance between Demir-2000 and Golia-99 were arginine biosynthesis, glycolysis/gluconeogenesis, and the metabolisms of cysteine and methionine, glutathione, glycine, serine and threonine, pyruvate, sulfur, and tyrosine. Overall, our results suggest that the distinct patterns of Al-induced overrepresentation in amino acid, carbohydrate, and energy metabolism play an important role in explaining the differential tolerance capacities of Demir-2000 and Golia-99 to Al toxicity. The outcomes of this study may provide valuable insights into improving Al tolerance in wheat through breeding and genetic engineering.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01622-1.</p>\",\"PeriodicalId\":20148,\"journal\":{\"name\":\"Physiology and Molecular Biology of Plants\",\"volume\":\"31 6\",\"pages\":\"1011-1026\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314282/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology and Molecular Biology of Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12298-025-01622-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-025-01622-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

铝(Al)毒性是低pH土壤中植物生长和产量的主要障碍。有机酸和酚类化合物对铝的排斥和/或液泡隔离是植物减轻铝毒性的主要耐受机制。然而,人们对铝毒性耐受性的内在和铝诱导的代谢差异知之甚少。为了填补这一空白,我们利用核磁共振(NMR)光谱测定了铝敏感(Golia-99)和耐铝(Demir-2000)面包小麦品种在0、10和30µM AlCl3·6H2O处理下的根系代谢谱。结果表明,在对照和Al胁迫条件下,Golia-99和Demir-2000根系中多种代谢物的浓度存在显著差异。在这方面,来自氨基酸和TCA组的一些代谢物,如柠檬酸、半胱氨酸、谷氨酸、异柠檬酸、苯丙氨酸和琥珀酸,在Demir-2000中被发现比Golia-99的水平更高。此外,铝毒性导致天冬酰胺、谷氨酰胺、腐胺、焦谷氨酸和可溶性糖在Demir-2000根中积累。此外,铝处理显著改变了品种特异性和品种非依赖性的许多代谢途径。造成Demir-2000和Golia-99对铝毒性耐受性差异的主要途径是精氨酸生物合成、糖酵解/糖异生、半胱氨酸和蛋氨酸、谷胱甘肽、甘氨酸、丝氨酸和苏氨酸、丙酮酸、硫和酪氨酸的代谢。总之,我们的研究结果表明,Al诱导的氨基酸、碳水化合物和能量代谢的不同模式在解释Demir-2000和Golia-99对Al毒性的不同耐受能力方面发挥了重要作用。本研究结果可能为通过育种和基因工程提高小麦耐铝性提供有价值的见解。补充信息:在线版本包含补充资料,可在10.1007/s12298-025-01622-1获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intrinsic and induced metabolic signatures underpin aluminum tolerance in bread wheat: a comparative metabolomics approach.

Aluminum (Al) toxicity is a major impediment to plant growth and yield in low pH soils. Exclusion and/or vacuolar sequestration of Al with organic acids and phenolic compounds is the primary tolerance mechanism utilized by plants to mitigate Al toxicity. However, little is known about the intrinsic and Al-induced metabolic differences underlying intraspecific variability in tolerance to Al toxicity. To fill this gap, we determined root metabolic profiles of Al-sensitive (Golia-99) and Al-tolerant (Demir-2000) bread wheat cultivars treated with 0, 10, and 30 µM AlCl3·6H2O using nuclear magnetic resonance (NMR) spectroscopy. Our results showed that there were marked differences in the concentrations of numerous metabolites between Golia-99 and Demir-2000 roots under both control and Al stress conditions. In this regard, a number of metabolites from the amino acid and TCA groups, such as citrate, cysteine, glutamate, isocitrate, phenylalanine, and succinate, were found to be intrinsically higher levels in Demir-2000 than in Golia-99. In addition, Al toxicity led to the accumulation of asparagine, glutamine, putrescine, pyroglutamate, and soluble sugars in Demir-2000 roots. Furthermore, Al treatments significantly altered many metabolic pathways in both cultivar-specific and cultivar-independent manners. The major pathways contributing to the difference in Al toxicity tolerance between Demir-2000 and Golia-99 were arginine biosynthesis, glycolysis/gluconeogenesis, and the metabolisms of cysteine and methionine, glutathione, glycine, serine and threonine, pyruvate, sulfur, and tyrosine. Overall, our results suggest that the distinct patterns of Al-induced overrepresentation in amino acid, carbohydrate, and energy metabolism play an important role in explaining the differential tolerance capacities of Demir-2000 and Golia-99 to Al toxicity. The outcomes of this study may provide valuable insights into improving Al tolerance in wheat through breeding and genetic engineering.

Supplementary information: The online version contains supplementary material available at 10.1007/s12298-025-01622-1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
126
期刊介绍: Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信