Nimra Tahir, Minhas Elahi, Rimsha Aslam, Umar Masood Quraishi
{"title":"姜黄素纳米颗粒的绿色合成、表征及其在小麦抗氧化防御、光合色素和农艺性状中的作用","authors":"Nimra Tahir, Minhas Elahi, Rimsha Aslam, Umar Masood Quraishi","doi":"10.1007/s12298-025-01615-0","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates the potential of green-synthesized curcumin nanoparticles (Cur-NPs) for mitigating arsenic (As) stress in wheat cultivars Barani-70 and NARC-09. Cur-NPs were characterized by UV-visible spectrophotometry, XRD (36 nm), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM), revealing well-dispersed, amorphous structures and functional groups. Both cultivars were subjected to 10 mg/L arsenic stress and treated with Cur-NPs at 50 mg/L and 100 mg/L through soil and foliar applications. Cur-NPs reduced arsenic uptake by up to 65.01% in leaves and 77.32% in roots. Cur-NP treatments lowered MDA by 50% and H<sub>2</sub>O<sub>2</sub> by 14%. Antioxidant enzyme activities improved; superoxide dismutase (SOD) increased by 13%, peroxidase (POD) by 5%, and catalase (CAT) by 0.5%. Proline content rose by 47%, enhancing osmoprotection. Chlorophyll a and b increased by 24% and 67%, respectively, while carotenoid content rose by 82%. Agronomic traits improved significantly, with plant height increasing by 69.6%, grain yield by 141.3%, and biomass yield by 1260.9%. Starch and total sugar content increased by 155% and 218%, respectively, while protein content rose by up to 225%. Phenolic and flavonoid contents increased by 43% and 37%, strengthening antioxidant defences. These findings underscore the efficacy of Cur-NPs as a sustainable approach to mitigate arsenic toxicity, strengthen antioxidant defence mechanisms, and enhance both physiological traits and agronomic performance in wheat, offering a strong foundation for future field-scale validation and environmental application.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01615-0.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 6","pages":"931-958"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314167/pdf/","citationCount":"0","resultStr":"{\"title\":\"Green synthesis of curcumin nanoparticles, characterization, and their role in alleviating arsenic-induced oxidative stress by enhancing antioxidant defense, photosynthetic pigments, and agronomic traits in wheat.\",\"authors\":\"Nimra Tahir, Minhas Elahi, Rimsha Aslam, Umar Masood Quraishi\",\"doi\":\"10.1007/s12298-025-01615-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluates the potential of green-synthesized curcumin nanoparticles (Cur-NPs) for mitigating arsenic (As) stress in wheat cultivars Barani-70 and NARC-09. Cur-NPs were characterized by UV-visible spectrophotometry, XRD (36 nm), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM), revealing well-dispersed, amorphous structures and functional groups. Both cultivars were subjected to 10 mg/L arsenic stress and treated with Cur-NPs at 50 mg/L and 100 mg/L through soil and foliar applications. Cur-NPs reduced arsenic uptake by up to 65.01% in leaves and 77.32% in roots. Cur-NP treatments lowered MDA by 50% and H<sub>2</sub>O<sub>2</sub> by 14%. Antioxidant enzyme activities improved; superoxide dismutase (SOD) increased by 13%, peroxidase (POD) by 5%, and catalase (CAT) by 0.5%. Proline content rose by 47%, enhancing osmoprotection. Chlorophyll a and b increased by 24% and 67%, respectively, while carotenoid content rose by 82%. Agronomic traits improved significantly, with plant height increasing by 69.6%, grain yield by 141.3%, and biomass yield by 1260.9%. Starch and total sugar content increased by 155% and 218%, respectively, while protein content rose by up to 225%. Phenolic and flavonoid contents increased by 43% and 37%, strengthening antioxidant defences. These findings underscore the efficacy of Cur-NPs as a sustainable approach to mitigate arsenic toxicity, strengthen antioxidant defence mechanisms, and enhance both physiological traits and agronomic performance in wheat, offering a strong foundation for future field-scale validation and environmental application.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01615-0.</p>\",\"PeriodicalId\":20148,\"journal\":{\"name\":\"Physiology and Molecular Biology of Plants\",\"volume\":\"31 6\",\"pages\":\"931-958\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314167/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology and Molecular Biology of Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12298-025-01615-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-025-01615-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Green synthesis of curcumin nanoparticles, characterization, and their role in alleviating arsenic-induced oxidative stress by enhancing antioxidant defense, photosynthetic pigments, and agronomic traits in wheat.
This study evaluates the potential of green-synthesized curcumin nanoparticles (Cur-NPs) for mitigating arsenic (As) stress in wheat cultivars Barani-70 and NARC-09. Cur-NPs were characterized by UV-visible spectrophotometry, XRD (36 nm), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM), revealing well-dispersed, amorphous structures and functional groups. Both cultivars were subjected to 10 mg/L arsenic stress and treated with Cur-NPs at 50 mg/L and 100 mg/L through soil and foliar applications. Cur-NPs reduced arsenic uptake by up to 65.01% in leaves and 77.32% in roots. Cur-NP treatments lowered MDA by 50% and H2O2 by 14%. Antioxidant enzyme activities improved; superoxide dismutase (SOD) increased by 13%, peroxidase (POD) by 5%, and catalase (CAT) by 0.5%. Proline content rose by 47%, enhancing osmoprotection. Chlorophyll a and b increased by 24% and 67%, respectively, while carotenoid content rose by 82%. Agronomic traits improved significantly, with plant height increasing by 69.6%, grain yield by 141.3%, and biomass yield by 1260.9%. Starch and total sugar content increased by 155% and 218%, respectively, while protein content rose by up to 225%. Phenolic and flavonoid contents increased by 43% and 37%, strengthening antioxidant defences. These findings underscore the efficacy of Cur-NPs as a sustainable approach to mitigate arsenic toxicity, strengthen antioxidant defence mechanisms, and enhance both physiological traits and agronomic performance in wheat, offering a strong foundation for future field-scale validation and environmental application.
Supplementary information: The online version contains supplementary material available at 10.1007/s12298-025-01615-0.
期刊介绍:
Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.