姜黄素纳米颗粒的绿色合成、表征及其在小麦抗氧化防御、光合色素和农艺性状中的作用

IF 3.3 3区 生物学 Q1 PLANT SCIENCES
Nimra Tahir, Minhas Elahi, Rimsha Aslam, Umar Masood Quraishi
{"title":"姜黄素纳米颗粒的绿色合成、表征及其在小麦抗氧化防御、光合色素和农艺性状中的作用","authors":"Nimra Tahir, Minhas Elahi, Rimsha Aslam, Umar Masood Quraishi","doi":"10.1007/s12298-025-01615-0","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates the potential of green-synthesized curcumin nanoparticles (Cur-NPs) for mitigating arsenic (As) stress in wheat cultivars Barani-70 and NARC-09. Cur-NPs were characterized by UV-visible spectrophotometry, XRD (36 nm), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM), revealing well-dispersed, amorphous structures and functional groups. Both cultivars were subjected to 10 mg/L arsenic stress and treated with Cur-NPs at 50 mg/L and 100 mg/L through soil and foliar applications. Cur-NPs reduced arsenic uptake by up to 65.01% in leaves and 77.32% in roots. Cur-NP treatments lowered MDA by 50% and H<sub>2</sub>O<sub>2</sub> by 14%. Antioxidant enzyme activities improved; superoxide dismutase (SOD) increased by 13%, peroxidase (POD) by 5%, and catalase (CAT) by 0.5%. Proline content rose by 47%, enhancing osmoprotection. Chlorophyll a and b increased by 24% and 67%, respectively, while carotenoid content rose by 82%. Agronomic traits improved significantly, with plant height increasing by 69.6%, grain yield by 141.3%, and biomass yield by 1260.9%. Starch and total sugar content increased by 155% and 218%, respectively, while protein content rose by up to 225%. Phenolic and flavonoid contents increased by 43% and 37%, strengthening antioxidant defences. These findings underscore the efficacy of Cur-NPs as a sustainable approach to mitigate arsenic toxicity, strengthen antioxidant defence mechanisms, and enhance both physiological traits and agronomic performance in wheat, offering a strong foundation for future field-scale validation and environmental application.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01615-0.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 6","pages":"931-958"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314167/pdf/","citationCount":"0","resultStr":"{\"title\":\"Green synthesis of curcumin nanoparticles, characterization, and their role in alleviating arsenic-induced oxidative stress by enhancing antioxidant defense, photosynthetic pigments, and agronomic traits in wheat.\",\"authors\":\"Nimra Tahir, Minhas Elahi, Rimsha Aslam, Umar Masood Quraishi\",\"doi\":\"10.1007/s12298-025-01615-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluates the potential of green-synthesized curcumin nanoparticles (Cur-NPs) for mitigating arsenic (As) stress in wheat cultivars Barani-70 and NARC-09. Cur-NPs were characterized by UV-visible spectrophotometry, XRD (36 nm), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM), revealing well-dispersed, amorphous structures and functional groups. Both cultivars were subjected to 10 mg/L arsenic stress and treated with Cur-NPs at 50 mg/L and 100 mg/L through soil and foliar applications. Cur-NPs reduced arsenic uptake by up to 65.01% in leaves and 77.32% in roots. Cur-NP treatments lowered MDA by 50% and H<sub>2</sub>O<sub>2</sub> by 14%. Antioxidant enzyme activities improved; superoxide dismutase (SOD) increased by 13%, peroxidase (POD) by 5%, and catalase (CAT) by 0.5%. Proline content rose by 47%, enhancing osmoprotection. Chlorophyll a and b increased by 24% and 67%, respectively, while carotenoid content rose by 82%. Agronomic traits improved significantly, with plant height increasing by 69.6%, grain yield by 141.3%, and biomass yield by 1260.9%. Starch and total sugar content increased by 155% and 218%, respectively, while protein content rose by up to 225%. Phenolic and flavonoid contents increased by 43% and 37%, strengthening antioxidant defences. These findings underscore the efficacy of Cur-NPs as a sustainable approach to mitigate arsenic toxicity, strengthen antioxidant defence mechanisms, and enhance both physiological traits and agronomic performance in wheat, offering a strong foundation for future field-scale validation and environmental application.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01615-0.</p>\",\"PeriodicalId\":20148,\"journal\":{\"name\":\"Physiology and Molecular Biology of Plants\",\"volume\":\"31 6\",\"pages\":\"931-958\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314167/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology and Molecular Biology of Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12298-025-01615-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-025-01615-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究评价了绿色合成的姜黄素纳米颗粒(curc - nps)缓解小麦品种Barani-70和NARC-09砷胁迫的潜力。通过紫外可见分光光度法、x射线衍射(XRD) (36 nm)、傅里叶变换红外光谱(FTIR)和扫描电镜(SEM)对cu - nps进行了表征,发现了分散良好、无定形的结构和官能团。两个品种均受到10 mg/L砷胁迫,并通过土壤和叶面施用50和100 mg/L的cu - nps。cu - nps使叶片对砷的吸收降低65.01%,使根对砷的吸收降低77.32%。Cur-NP处理降低MDA 50%和H2O2 14%。抗氧化酶活性提高;超氧化物歧化酶(SOD)升高13%,过氧化物酶(POD)升高5%,过氧化氢酶(CAT)升高0.5%。脯氨酸含量提高47%,增强渗透保护作用。叶绿素a和b含量分别提高24%和67%,类胡萝卜素含量提高82%。农艺性状显著改善,株高提高69.6%,籽粒产量提高141.3%,生物量产量提高1260.9%。淀粉和总糖含量分别增加了155%和218%,蛋白质含量增加了225%。酚类和类黄酮含量分别增加43%和37%,增强了抗氧化防御能力。这些发现强调了cu - nps作为一种减轻砷毒性、增强抗氧化防御机制、提高小麦生理性状和农艺性能的可持续方法的有效性,为未来的田间规模验证和环境应用奠定了坚实的基础。补充信息:在线版本包含补充资料,可在10.1007/s12298-025-01615-0获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green synthesis of curcumin nanoparticles, characterization, and their role in alleviating arsenic-induced oxidative stress by enhancing antioxidant defense, photosynthetic pigments, and agronomic traits in wheat.

This study evaluates the potential of green-synthesized curcumin nanoparticles (Cur-NPs) for mitigating arsenic (As) stress in wheat cultivars Barani-70 and NARC-09. Cur-NPs were characterized by UV-visible spectrophotometry, XRD (36 nm), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM), revealing well-dispersed, amorphous structures and functional groups. Both cultivars were subjected to 10 mg/L arsenic stress and treated with Cur-NPs at 50 mg/L and 100 mg/L through soil and foliar applications. Cur-NPs reduced arsenic uptake by up to 65.01% in leaves and 77.32% in roots. Cur-NP treatments lowered MDA by 50% and H2O2 by 14%. Antioxidant enzyme activities improved; superoxide dismutase (SOD) increased by 13%, peroxidase (POD) by 5%, and catalase (CAT) by 0.5%. Proline content rose by 47%, enhancing osmoprotection. Chlorophyll a and b increased by 24% and 67%, respectively, while carotenoid content rose by 82%. Agronomic traits improved significantly, with plant height increasing by 69.6%, grain yield by 141.3%, and biomass yield by 1260.9%. Starch and total sugar content increased by 155% and 218%, respectively, while protein content rose by up to 225%. Phenolic and flavonoid contents increased by 43% and 37%, strengthening antioxidant defences. These findings underscore the efficacy of Cur-NPs as a sustainable approach to mitigate arsenic toxicity, strengthen antioxidant defence mechanisms, and enhance both physiological traits and agronomic performance in wheat, offering a strong foundation for future field-scale validation and environmental application.

Supplementary information: The online version contains supplementary material available at 10.1007/s12298-025-01615-0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
126
期刊介绍: Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信