壳聚糖对截水条件下姜黄植株生长、生理性状、根茎性状及姜黄素含量的影响

IF 3.3 3区 生物学 Q1 PLANT SCIENCES
Nutwadee Chintakovid, Rujira Tisarum, Thapanee Samphumphuang, Thanyaporn Sotesaritkul, Hayat Ullah, Avishek Datta, Suriyan Cha-Um
{"title":"壳聚糖对截水条件下姜黄植株生长、生理性状、根茎性状及姜黄素含量的影响","authors":"Nutwadee Chintakovid, Rujira Tisarum, Thapanee Samphumphuang, Thanyaporn Sotesaritkul, Hayat Ullah, Avishek Datta, Suriyan Cha-Um","doi":"10.1007/s12298-025-01618-x","DOIUrl":null,"url":null,"abstract":"<p><p>Rhizome yield traits and curcuminoids in turmeric (<i>Curcuma longa</i> L.) rhizome are the major determining factors for its production, especially under water-limited environments. Chitosan, a member of biostimulants, regulates physiological adaptation strategy and works as a chemical elicitor in several plant species under withholding water. The objective of the present study was to assess growth characteristics, physiological adaptation, rhizome attributes, total curcuminoids content, and upregulated expression levels of curcuminoids-related genes in turmeric under water withholding using chitosan biostimulant. The response of two contrasting genotypes, high curcuminoids cv. Surat Thani (ST) and low curcuminoids cv. Pichit (PJT) was evaluated under two water management practices (withholding water for 45 days [WD] and daily irrigation/well-watered [WW] condition) with or without foliar application of chitosan at 20 mg L<sup>-1</sup>. Leaf area and pseudostem dry weight in ST grown under WD were significantly decreased by 39% and 26%, respectively, over WW condition without chitosan application, whereas the two water management practices resulted in similar responses in plants treated with 20 mg L<sup>-1</sup> chitosan foliar spray. Fresh weight and dry weight of rhizome under WD were decreased by > 40% over WW treatment. Leaf temperature and crop water stress index were sustained at a low level by 20 mg L<sup>-1</sup> chitosan application, resulting in the preservation of leaf osmotic potential and photon yield of PSII, especially in PJT. In contrast, gas exchange parameters such as transpiration rate, net photosynthetic rate, and stomatal conductance were severely affected by WD, which in turn reduced the amount of total soluble sugar. Under WD, the expression levels of curcuminoids-related genes were increased, whereas total curcuminoids content in the turmeric rhizomes was significantly decreased. The results indicate that foliar application of chitosan as a biostimulant plays a positive role in reducing the harmful impact of drought stress and improving growth characteristics; however, the degree of positive effect is dependent on genotype, application dose, and level of water availability.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01618-x.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 6","pages":"877-893"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314141/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of chitosan on plant growth, physiological traits, rhizome attributes, and curcuminoids content of turmeric (<i>Curcuma longa</i> L.) under withholding water.\",\"authors\":\"Nutwadee Chintakovid, Rujira Tisarum, Thapanee Samphumphuang, Thanyaporn Sotesaritkul, Hayat Ullah, Avishek Datta, Suriyan Cha-Um\",\"doi\":\"10.1007/s12298-025-01618-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rhizome yield traits and curcuminoids in turmeric (<i>Curcuma longa</i> L.) rhizome are the major determining factors for its production, especially under water-limited environments. Chitosan, a member of biostimulants, regulates physiological adaptation strategy and works as a chemical elicitor in several plant species under withholding water. The objective of the present study was to assess growth characteristics, physiological adaptation, rhizome attributes, total curcuminoids content, and upregulated expression levels of curcuminoids-related genes in turmeric under water withholding using chitosan biostimulant. The response of two contrasting genotypes, high curcuminoids cv. Surat Thani (ST) and low curcuminoids cv. Pichit (PJT) was evaluated under two water management practices (withholding water for 45 days [WD] and daily irrigation/well-watered [WW] condition) with or without foliar application of chitosan at 20 mg L<sup>-1</sup>. Leaf area and pseudostem dry weight in ST grown under WD were significantly decreased by 39% and 26%, respectively, over WW condition without chitosan application, whereas the two water management practices resulted in similar responses in plants treated with 20 mg L<sup>-1</sup> chitosan foliar spray. Fresh weight and dry weight of rhizome under WD were decreased by > 40% over WW treatment. Leaf temperature and crop water stress index were sustained at a low level by 20 mg L<sup>-1</sup> chitosan application, resulting in the preservation of leaf osmotic potential and photon yield of PSII, especially in PJT. In contrast, gas exchange parameters such as transpiration rate, net photosynthetic rate, and stomatal conductance were severely affected by WD, which in turn reduced the amount of total soluble sugar. Under WD, the expression levels of curcuminoids-related genes were increased, whereas total curcuminoids content in the turmeric rhizomes was significantly decreased. The results indicate that foliar application of chitosan as a biostimulant plays a positive role in reducing the harmful impact of drought stress and improving growth characteristics; however, the degree of positive effect is dependent on genotype, application dose, and level of water availability.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01618-x.</p>\",\"PeriodicalId\":20148,\"journal\":{\"name\":\"Physiology and Molecular Biology of Plants\",\"volume\":\"31 6\",\"pages\":\"877-893\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314141/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology and Molecular Biology of Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12298-025-01618-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-025-01618-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

姜黄(Curcuma longa L.)根茎产量性状和姜黄素是其生产的主要决定因素,特别是在缺水环境下。壳聚糖作为生物刺激剂的一员,调节了几种植物在缺水条件下的生理适应策略,并作为化学刺激剂发挥作用。本研究旨在研究壳聚糖生物刺激素对姜黄生长特性、生理适应性、根茎特性、姜黄素总含量及姜黄素相关基因表达水平的影响。两种对照基因型的反应,高姜黄素cv。素叻他尼(ST)与低姜黄素cv。在叶面施用20 mg L-1的壳聚糖和不施用壳聚糖的情况下,对Pichit (PJT)在两种水分管理方法(45 d不浇水和每天灌溉/充分浇水)下进行了评价。与不施用壳聚糖相比,在WD条件下生长的水稻叶面积和假茎干重分别显著减少39%和26%,而在20 mg L-1壳聚糖叶面喷雾处理下,两种水分管理方式对水稻叶面积和假茎干重的影响相似。与WW处理相比,WD处理下根茎鲜重和干重降低了约40%。20 mg L-1壳聚糖使叶片温度和作物水分胁迫指数维持在较低水平,保持了PSII叶片渗透势和光子产量,尤其是PJT叶片。蒸腾速率、净光合速率和气孔导度等气体交换参数受WD的影响较大,从而降低了总可溶性糖的含量。WD处理下,姜黄素相关基因表达量增加,姜黄根茎中总姜黄素含量显著降低。结果表明,叶面施用壳聚糖作为生物刺激素,对减少干旱胁迫的有害影响,改善生长特性具有积极作用;然而,积极作用的程度取决于基因型、施用剂量和水分供应水平。补充信息:在线版本包含补充资料,可在10.1007/s12298-025-01618-x获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of chitosan on plant growth, physiological traits, rhizome attributes, and curcuminoids content of turmeric (Curcuma longa L.) under withholding water.

Rhizome yield traits and curcuminoids in turmeric (Curcuma longa L.) rhizome are the major determining factors for its production, especially under water-limited environments. Chitosan, a member of biostimulants, regulates physiological adaptation strategy and works as a chemical elicitor in several plant species under withholding water. The objective of the present study was to assess growth characteristics, physiological adaptation, rhizome attributes, total curcuminoids content, and upregulated expression levels of curcuminoids-related genes in turmeric under water withholding using chitosan biostimulant. The response of two contrasting genotypes, high curcuminoids cv. Surat Thani (ST) and low curcuminoids cv. Pichit (PJT) was evaluated under two water management practices (withholding water for 45 days [WD] and daily irrigation/well-watered [WW] condition) with or without foliar application of chitosan at 20 mg L-1. Leaf area and pseudostem dry weight in ST grown under WD were significantly decreased by 39% and 26%, respectively, over WW condition without chitosan application, whereas the two water management practices resulted in similar responses in plants treated with 20 mg L-1 chitosan foliar spray. Fresh weight and dry weight of rhizome under WD were decreased by > 40% over WW treatment. Leaf temperature and crop water stress index were sustained at a low level by 20 mg L-1 chitosan application, resulting in the preservation of leaf osmotic potential and photon yield of PSII, especially in PJT. In contrast, gas exchange parameters such as transpiration rate, net photosynthetic rate, and stomatal conductance were severely affected by WD, which in turn reduced the amount of total soluble sugar. Under WD, the expression levels of curcuminoids-related genes were increased, whereas total curcuminoids content in the turmeric rhizomes was significantly decreased. The results indicate that foliar application of chitosan as a biostimulant plays a positive role in reducing the harmful impact of drought stress and improving growth characteristics; however, the degree of positive effect is dependent on genotype, application dose, and level of water availability.

Supplementary information: The online version contains supplementary material available at 10.1007/s12298-025-01618-x.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
126
期刊介绍: Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信