{"title":"赤霉素酸与油菜素内酯缓解豌豆干旱胁迫的比较效应。","authors":"Atif Kamran, Kainat Shakeel, Summera Jahan, Lubaba Komal","doi":"10.1007/s12298-025-01617-y","DOIUrl":null,"url":null,"abstract":"<p><p>Drought stress significantly reduces the crop productivity, including pea (<i>Pisum sativum</i> L.), 'necessitating development of effective strategies to mitigate these losses under changing climatic conditions. This study explores the potential of foliar-applied gibberellic acid (GA<sub>3</sub>) and brassinolide (BR), individually and in combination, to enhance the drought resilience in pea plants. A pot experiment was conducted comprising of treatments i.e. T0 (no-stress), T1 (Stress-without foliar application), T2 (0.4% GA<sub>3</sub>), T3 (0.002% BR) and T4 (T2 + T3). Results indicated that T4 induced the most pronounced improvement in plant height (50%), leaf area (66.4%), total chlorophyll (41%) and carotenoid contents (89%), pod fresh (57.93%) and dry weight (89%), seeds per pod (41%) with enhanced antioxidant activity (81%) as compared to T1 and T0. Additionally, the seed nutrients including crude protein, crude fibre, and nitrogen free extract were increased by 34.6%, 55.9%, and 15% respectively with T4 as compared to T1. The plants treated with T4, were comparable with control in their morphological and yield indices, exhibiting higher stress tolerance; followed by plants receiving T3 (0.002% BR). Molecular docking analysis further substantiates these findings, revealing strong binding affinities of BR (protein ID: 2PWJ; ΔG = - 6.99) and GA<sub>3</sub> (protein ID: KAI2; ΔG = - 7.31) with stress-relieving proteins. These interactions highlight the synergistic role of GA<sub>3</sub> and BR in enhancing drought tolerance through morphological, physiological and metabolic ameliorations. This study concludes that the combined application of GA<sub>3</sub> and BR effectively mitigates drought stress in <i>P. sativum</i> offering a promising approach to safeguard yield under water-limited conditions.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 6","pages":"979-991"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314174/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative effect of gibberellic acid and brassinolide for mitigating drought stress in pea (<i>Pisum sativum</i> L.).\",\"authors\":\"Atif Kamran, Kainat Shakeel, Summera Jahan, Lubaba Komal\",\"doi\":\"10.1007/s12298-025-01617-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drought stress significantly reduces the crop productivity, including pea (<i>Pisum sativum</i> L.), 'necessitating development of effective strategies to mitigate these losses under changing climatic conditions. This study explores the potential of foliar-applied gibberellic acid (GA<sub>3</sub>) and brassinolide (BR), individually and in combination, to enhance the drought resilience in pea plants. A pot experiment was conducted comprising of treatments i.e. T0 (no-stress), T1 (Stress-without foliar application), T2 (0.4% GA<sub>3</sub>), T3 (0.002% BR) and T4 (T2 + T3). Results indicated that T4 induced the most pronounced improvement in plant height (50%), leaf area (66.4%), total chlorophyll (41%) and carotenoid contents (89%), pod fresh (57.93%) and dry weight (89%), seeds per pod (41%) with enhanced antioxidant activity (81%) as compared to T1 and T0. Additionally, the seed nutrients including crude protein, crude fibre, and nitrogen free extract were increased by 34.6%, 55.9%, and 15% respectively with T4 as compared to T1. The plants treated with T4, were comparable with control in their morphological and yield indices, exhibiting higher stress tolerance; followed by plants receiving T3 (0.002% BR). Molecular docking analysis further substantiates these findings, revealing strong binding affinities of BR (protein ID: 2PWJ; ΔG = - 6.99) and GA<sub>3</sub> (protein ID: KAI2; ΔG = - 7.31) with stress-relieving proteins. These interactions highlight the synergistic role of GA<sub>3</sub> and BR in enhancing drought tolerance through morphological, physiological and metabolic ameliorations. This study concludes that the combined application of GA<sub>3</sub> and BR effectively mitigates drought stress in <i>P. sativum</i> offering a promising approach to safeguard yield under water-limited conditions.</p><p><strong>Graphical abstract: </strong></p>\",\"PeriodicalId\":20148,\"journal\":{\"name\":\"Physiology and Molecular Biology of Plants\",\"volume\":\"31 6\",\"pages\":\"979-991\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314174/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology and Molecular Biology of Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12298-025-01617-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-025-01617-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Comparative effect of gibberellic acid and brassinolide for mitigating drought stress in pea (Pisum sativum L.).
Drought stress significantly reduces the crop productivity, including pea (Pisum sativum L.), 'necessitating development of effective strategies to mitigate these losses under changing climatic conditions. This study explores the potential of foliar-applied gibberellic acid (GA3) and brassinolide (BR), individually and in combination, to enhance the drought resilience in pea plants. A pot experiment was conducted comprising of treatments i.e. T0 (no-stress), T1 (Stress-without foliar application), T2 (0.4% GA3), T3 (0.002% BR) and T4 (T2 + T3). Results indicated that T4 induced the most pronounced improvement in plant height (50%), leaf area (66.4%), total chlorophyll (41%) and carotenoid contents (89%), pod fresh (57.93%) and dry weight (89%), seeds per pod (41%) with enhanced antioxidant activity (81%) as compared to T1 and T0. Additionally, the seed nutrients including crude protein, crude fibre, and nitrogen free extract were increased by 34.6%, 55.9%, and 15% respectively with T4 as compared to T1. The plants treated with T4, were comparable with control in their morphological and yield indices, exhibiting higher stress tolerance; followed by plants receiving T3 (0.002% BR). Molecular docking analysis further substantiates these findings, revealing strong binding affinities of BR (protein ID: 2PWJ; ΔG = - 6.99) and GA3 (protein ID: KAI2; ΔG = - 7.31) with stress-relieving proteins. These interactions highlight the synergistic role of GA3 and BR in enhancing drought tolerance through morphological, physiological and metabolic ameliorations. This study concludes that the combined application of GA3 and BR effectively mitigates drought stress in P. sativum offering a promising approach to safeguard yield under water-limited conditions.
期刊介绍:
Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.