瓜氨酸通过光合作用、氧化还原平衡、渗透调节和激素调节以及养分同化增强向日葵的耐盐性。

IF 3.3 3区 生物学 Q1 PLANT SCIENCES
Umer Farooq, Muhammad Arslan Ashraf, Rizwan Rasheed
{"title":"瓜氨酸通过光合作用、氧化还原平衡、渗透调节和激素调节以及养分同化增强向日葵的耐盐性。","authors":"Umer Farooq, Muhammad Arslan Ashraf, Rizwan Rasheed","doi":"10.1007/s12298-025-01626-x","DOIUrl":null,"url":null,"abstract":"<p><p>Citrulline (CITR) is a strong osmolyte and hydroxyl radical scavenger. However, no previous study has reported the ameliorative role of CITR under salinity stress. We found a significant decrease in growth, chlorophyll content, SPAD value, photosynthesis, leaf relative water content, and nutrient acquisition in sunflower plants exposed to salinity (15 dS m<sup>‒1</sup>). Salinity caused substantial oxidative damage through elevating the levels of superoxide radicals (O<sub>2</sub> <sup>•‒</sup>), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), hydroxyl radicals (·OH), leaf relative membrane permeability, malondialdehyde (MDA) and activity of lipoxygenase (LOX). Plants subjected to salinity manifested a higher buildup of methylglyoxal (MG), further exacerbating the cellular damage. However, CITR seed priming (1, 2, and 3 mM) partially relieved the negative repercussions of salinity by promoting the activities of antioxidant enzymes and levels of non-enzymatic antioxidants. Consequently, plants raised from CITR-primed seeds suffered less from oxidative damage and exhibited lower generation of O<sub>2</sub>·<sup>‒</sup>, H<sub>2</sub>O<sub>2</sub>, ·OH, MG, MDA, and activity of LOX. Plants under CITR supplementation exhibited higher chlorophyll content and improved efficiency of photosystem II as evidenced by higher values of maximum efficiency of photosystem-II (Fv/Fm), fraction of open PSII centers (qL), and photochemical quenching coefficient (qP). Citrulline priming enhanced plant resilience under salinity by improving hormonal balance, promoting polyamine accumulation, and sustaining photosynthetic performance. CITR bettered osmotic regulation through increased accumulation of osmolytes such as proline, glycine betaine, and total soluble sugars. Citrulline improved nutrient acquisition and diminished excess Na buildup, preventing specific ion toxicity and osmotic stress.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01626-x.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 6","pages":"1027-1052"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314138/pdf/","citationCount":"0","resultStr":"{\"title\":\"Citrulline enhances salinity tolerance via photosynthesis, redox balance, osmotic and hormonal regulation, and nutrient assimilation in sunflower (<i>Helianthus annuus</i> L.).\",\"authors\":\"Umer Farooq, Muhammad Arslan Ashraf, Rizwan Rasheed\",\"doi\":\"10.1007/s12298-025-01626-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Citrulline (CITR) is a strong osmolyte and hydroxyl radical scavenger. However, no previous study has reported the ameliorative role of CITR under salinity stress. We found a significant decrease in growth, chlorophyll content, SPAD value, photosynthesis, leaf relative water content, and nutrient acquisition in sunflower plants exposed to salinity (15 dS m<sup>‒1</sup>). Salinity caused substantial oxidative damage through elevating the levels of superoxide radicals (O<sub>2</sub> <sup>•‒</sup>), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), hydroxyl radicals (·OH), leaf relative membrane permeability, malondialdehyde (MDA) and activity of lipoxygenase (LOX). Plants subjected to salinity manifested a higher buildup of methylglyoxal (MG), further exacerbating the cellular damage. However, CITR seed priming (1, 2, and 3 mM) partially relieved the negative repercussions of salinity by promoting the activities of antioxidant enzymes and levels of non-enzymatic antioxidants. Consequently, plants raised from CITR-primed seeds suffered less from oxidative damage and exhibited lower generation of O<sub>2</sub>·<sup>‒</sup>, H<sub>2</sub>O<sub>2</sub>, ·OH, MG, MDA, and activity of LOX. Plants under CITR supplementation exhibited higher chlorophyll content and improved efficiency of photosystem II as evidenced by higher values of maximum efficiency of photosystem-II (Fv/Fm), fraction of open PSII centers (qL), and photochemical quenching coefficient (qP). Citrulline priming enhanced plant resilience under salinity by improving hormonal balance, promoting polyamine accumulation, and sustaining photosynthetic performance. CITR bettered osmotic regulation through increased accumulation of osmolytes such as proline, glycine betaine, and total soluble sugars. Citrulline improved nutrient acquisition and diminished excess Na buildup, preventing specific ion toxicity and osmotic stress.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01626-x.</p>\",\"PeriodicalId\":20148,\"journal\":{\"name\":\"Physiology and Molecular Biology of Plants\",\"volume\":\"31 6\",\"pages\":\"1027-1052\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314138/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology and Molecular Biology of Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12298-025-01626-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-025-01626-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

瓜氨酸(CITR)是一种强渗透剂和羟基自由基清除剂。然而,目前尚无研究报道CITR在盐胁迫下的改善作用。我们发现,暴露于盐度(15 dS m-1)下的向日葵植株的生长、叶绿素含量、SPAD值、光合作用、叶片相对含水量和养分获取显著降低。盐度通过提高超氧自由基(O2•-)、过氧化氢(H2O2)、羟基自由基(·OH)、叶片相对膜通透性、丙二醛(MDA)和脂氧合酶(LOX)的活性,造成了实质性的氧化损伤。受盐胁迫的植物表现出较高的甲基乙二醛(MG)积累,进一步加剧了细胞损伤。然而,CITR种子激发(1、2和3 mM)通过促进抗氧化酶的活性和非酶抗氧化剂的水平,部分缓解了盐度的负面影响。因此,由citr引物种子培养的植株受到的氧化损伤较小,O2·-、H2O2、·OH、MG、MDA的生成和LOX活性均较低。添加了CITR的植株叶绿素含量更高,光系统II效率更高,最大光系统II效率(Fv/Fm)、开放PSII中心比例(qL)和光化学猝灭系数(qP)均有所提高。瓜氨酸通过改善激素平衡、促进多胺积累和维持光合性能来增强植物在盐度下的抗复性。CITR通过增加脯氨酸、甘氨酸、甜菜碱和总可溶性糖等渗透物的积累来改善渗透调节。瓜氨酸改善营养获取和减少多余的钠积累,防止特定离子毒性和渗透应激。补充信息:在线版本包含补充资料,下载地址为10.1007/s12298-025-01626-x。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Citrulline enhances salinity tolerance via photosynthesis, redox balance, osmotic and hormonal regulation, and nutrient assimilation in sunflower (Helianthus annuus L.).

Citrulline (CITR) is a strong osmolyte and hydroxyl radical scavenger. However, no previous study has reported the ameliorative role of CITR under salinity stress. We found a significant decrease in growth, chlorophyll content, SPAD value, photosynthesis, leaf relative water content, and nutrient acquisition in sunflower plants exposed to salinity (15 dS m‒1). Salinity caused substantial oxidative damage through elevating the levels of superoxide radicals (O2 •‒), hydrogen peroxide (H2O2), hydroxyl radicals (·OH), leaf relative membrane permeability, malondialdehyde (MDA) and activity of lipoxygenase (LOX). Plants subjected to salinity manifested a higher buildup of methylglyoxal (MG), further exacerbating the cellular damage. However, CITR seed priming (1, 2, and 3 mM) partially relieved the negative repercussions of salinity by promoting the activities of antioxidant enzymes and levels of non-enzymatic antioxidants. Consequently, plants raised from CITR-primed seeds suffered less from oxidative damage and exhibited lower generation of O2·, H2O2, ·OH, MG, MDA, and activity of LOX. Plants under CITR supplementation exhibited higher chlorophyll content and improved efficiency of photosystem II as evidenced by higher values of maximum efficiency of photosystem-II (Fv/Fm), fraction of open PSII centers (qL), and photochemical quenching coefficient (qP). Citrulline priming enhanced plant resilience under salinity by improving hormonal balance, promoting polyamine accumulation, and sustaining photosynthetic performance. CITR bettered osmotic regulation through increased accumulation of osmolytes such as proline, glycine betaine, and total soluble sugars. Citrulline improved nutrient acquisition and diminished excess Na buildup, preventing specific ion toxicity and osmotic stress.

Supplementary information: The online version contains supplementary material available at 10.1007/s12298-025-01626-x.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
126
期刊介绍: Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信