Y N Priya Reddy, Joy Michal Johnson, Ralf Oelmüller
{"title":"在拟南芥根系中,镰孢菌细胞壁提取物需要线粒体POLY(A)-SPECIFIC RIBONUCLEASE AtPARN来诱导细胞质钙升高。","authors":"Y N Priya Reddy, Joy Michal Johnson, Ralf Oelmüller","doi":"10.1007/s12298-025-01600-7","DOIUrl":null,"url":null,"abstract":"<p><p>Cytoplasmic Ca<sup>2+</sup> ([Ca<sup>2+</sup>]<sub>cyt</sub>) elevation is a rapid response of roots to colonizing beneficial and pathogenic fungi. We have previously demonstrated that the elicitor-active compound cellotriose from a cell wall (CW) extract of the beneficial fungus <i>Piriformospora indica</i> requires the MALECTIN-DOMAIN CONTAINING CELLOOLIGOMER RECEPTOR KINASE1 (CORK1) and the mitochondrial POLY(A)-SPECIFIC RIBONUCLASE AtPARN for [Ca<sup>2+</sup>]<sub>cyt</sub> elevation in Arabidopsis roots. Here, we show that CW extracts from beneficial and pathogenic <i>Fusarium</i> strains, in particular <i>Fusarium incarnatum</i> strain K23, require AtPARN, but not CORK1 for [Ca<sup>2+</sup>]<sub>cyt</sub> elevation and the activation of Ca<sup>2+</sup>-dependent downstream responses. [Ca<sup>2+</sup>]<sub>cyt</sub> elevation by the <i>F. incarnatum</i> strain K23 extract does not require the BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 (BAK1) co-receptor or the TWO-PORE Ca<sup>2+</sup> CHANNEL1 (TPC1) but operates synergistically with the cellotriose- and chitin-induced signaling pathways. We propose a convergence of the signaling pathways induced by the CW extracts from <i>P. indica</i> and K23 at AtPARN prior to the increase in [Ca<sup>2+</sup>]<sub>cyt</sub> ~ 90 s after the stimulus. Furthermore, the elevated [Ca<sup>2+</sup>]<sub>cyt</sub> levels activate a mild defense response which might be used by the roots to restrict fungal propagation and to balance beneficial and non-beneficial traits in the symbiosis.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01600-7.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 6","pages":"851-861"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314164/pdf/","citationCount":"0","resultStr":"{\"title\":\"A cell wall extract of a <i>Fusarium incarnatum</i> strain requires the mitochondrial POLY(A)-SPECIFIC RIBONUCLEASE AtPARN for inducing cytoplasmic calcium elevation in Arabidopsis roots.\",\"authors\":\"Y N Priya Reddy, Joy Michal Johnson, Ralf Oelmüller\",\"doi\":\"10.1007/s12298-025-01600-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cytoplasmic Ca<sup>2+</sup> ([Ca<sup>2+</sup>]<sub>cyt</sub>) elevation is a rapid response of roots to colonizing beneficial and pathogenic fungi. We have previously demonstrated that the elicitor-active compound cellotriose from a cell wall (CW) extract of the beneficial fungus <i>Piriformospora indica</i> requires the MALECTIN-DOMAIN CONTAINING CELLOOLIGOMER RECEPTOR KINASE1 (CORK1) and the mitochondrial POLY(A)-SPECIFIC RIBONUCLASE AtPARN for [Ca<sup>2+</sup>]<sub>cyt</sub> elevation in Arabidopsis roots. Here, we show that CW extracts from beneficial and pathogenic <i>Fusarium</i> strains, in particular <i>Fusarium incarnatum</i> strain K23, require AtPARN, but not CORK1 for [Ca<sup>2+</sup>]<sub>cyt</sub> elevation and the activation of Ca<sup>2+</sup>-dependent downstream responses. [Ca<sup>2+</sup>]<sub>cyt</sub> elevation by the <i>F. incarnatum</i> strain K23 extract does not require the BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 (BAK1) co-receptor or the TWO-PORE Ca<sup>2+</sup> CHANNEL1 (TPC1) but operates synergistically with the cellotriose- and chitin-induced signaling pathways. We propose a convergence of the signaling pathways induced by the CW extracts from <i>P. indica</i> and K23 at AtPARN prior to the increase in [Ca<sup>2+</sup>]<sub>cyt</sub> ~ 90 s after the stimulus. Furthermore, the elevated [Ca<sup>2+</sup>]<sub>cyt</sub> levels activate a mild defense response which might be used by the roots to restrict fungal propagation and to balance beneficial and non-beneficial traits in the symbiosis.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01600-7.</p>\",\"PeriodicalId\":20148,\"journal\":{\"name\":\"Physiology and Molecular Biology of Plants\",\"volume\":\"31 6\",\"pages\":\"851-861\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314164/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology and Molecular Biology of Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12298-025-01600-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-025-01600-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
A cell wall extract of a Fusarium incarnatum strain requires the mitochondrial POLY(A)-SPECIFIC RIBONUCLEASE AtPARN for inducing cytoplasmic calcium elevation in Arabidopsis roots.
Cytoplasmic Ca2+ ([Ca2+]cyt) elevation is a rapid response of roots to colonizing beneficial and pathogenic fungi. We have previously demonstrated that the elicitor-active compound cellotriose from a cell wall (CW) extract of the beneficial fungus Piriformospora indica requires the MALECTIN-DOMAIN CONTAINING CELLOOLIGOMER RECEPTOR KINASE1 (CORK1) and the mitochondrial POLY(A)-SPECIFIC RIBONUCLASE AtPARN for [Ca2+]cyt elevation in Arabidopsis roots. Here, we show that CW extracts from beneficial and pathogenic Fusarium strains, in particular Fusarium incarnatum strain K23, require AtPARN, but not CORK1 for [Ca2+]cyt elevation and the activation of Ca2+-dependent downstream responses. [Ca2+]cyt elevation by the F. incarnatum strain K23 extract does not require the BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 (BAK1) co-receptor or the TWO-PORE Ca2+ CHANNEL1 (TPC1) but operates synergistically with the cellotriose- and chitin-induced signaling pathways. We propose a convergence of the signaling pathways induced by the CW extracts from P. indica and K23 at AtPARN prior to the increase in [Ca2+]cyt ~ 90 s after the stimulus. Furthermore, the elevated [Ca2+]cyt levels activate a mild defense response which might be used by the roots to restrict fungal propagation and to balance beneficial and non-beneficial traits in the symbiosis.
Supplementary information: The online version contains supplementary material available at 10.1007/s12298-025-01600-7.
期刊介绍:
Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.